Skip to main content

Advertisement

Log in

Immunoparesis defined by heavy/light chain pair suppression in smoldering multiple myeloma shows initial isotype specificity and involves other isotypes in advanced disease

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Smoldering multiple myeloma (SMM) is an asymptomatic and biologically heterogeneous plasma cell disorder, with a highly variable clinical course. Immunoparesis, defined by total immunoglobulin measurements, has been shown to be an independent risk factor for progression to symptomatic disease. The heavy/light chain (HLC) assay allows precise measurement of the polyclonal immunoglobulin of the same isotype, enabling the evaluation of isotype-matched immunoparesis (IMI). In this study, we prospectively characterized immunoparesis, as determined by HLC measurements, in 53 SMM patients. Severe IMI was present in 51% of patients, while severe IP of uninvolved isotypes (HLC IP) was present in 39%. Most of the patients with severe HLC IP presented with severe IMI, but not the other way around. Isotype specificity of immune suppression was suggested by lower relative values of isotype-matched HLC pairs, both for IgG and IgA SMM. Severe IMI was associated with other risk factors for progression while patients with severe IMI and severe HLC IP showed an even higher risk profile. Both severe IMI and severe IgM HLC IP showed a significantly shorter time to progression. Finally, gene expression analysis demonstrated differences in the bone marrow microenvironment between patients with IMI and IMI plus HLC IP, with an increased expression of genes associated with cytolytic cells. In conclusion, our data supports isotype specificity of early immunoglobulin suppression mechanisms. While suppression of both involved and uninvolved isotypes is associated with risk of progression, the later appears to develop with more advanced disease and could be mediated by different mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

The datasets generated during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Kapoor P, Rajkumar SV (2019) Smoldering multiple myeloma: to treat or not to treat. Cancer J 25(1):65–71. https://doi.org/10.1097/PPO.0000000000000350

    Article  PubMed  Google Scholar 

  2. Dispenzieri A, Kyle RA, Katzmann JA, Therneau TM, Larson D, Benson J, Clark RJ, Melton LJ 3rd, Gertz MA, Kumar SK, Fonseca R, Jelinek DF, Rajkumar SV (2008) Immunoglobulin free light chain ratio is an independent risk factor for progression of smoldering (asymptomatic) multiple myeloma. Blood 111(2):785–789. https://doi.org/10.1182/blood-2007-08-108357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pérez-Persona E, Vidriales MB, Mateo G, García-Sanz R, Mateos MV, de Coca AG, Galende J, Martín-Nuñez G, Alonso JM, de Las HN, Hernández JM, Martín A, López-Berges C, Orfao A, San Miguel JF (2007) New criteria to identify risk of progression in monoclonal gammopathy of uncertain significance and smoldering multiple myeloma based on multiparameter flow cytometry analysis of bone marrow plasma cells. Blood 110(7):2586–2592. https://doi.org/10.1182/blood-2007-05-088443

    Article  CAS  PubMed  Google Scholar 

  4. Mateos MV, Kumar S, Dimopoulos MA, González-Calle V, Kastritis E, Hajek R, De Larrea CF, Morgan GJ, Merlini G, Goldschmidt H, Geraldes C, Gozzetti A, Kyriakou C, Garderet L, Hansson M, Zamagni E, Fantl D, Leleu X, Kim BS, Esteves G, Ludwig H, Usmani S, Min CK, Qi M, Ukropec J, Weiss BM, Rajkumar SV, Durie BGM, San-Miguel J (2020) International Myeloma Working Group risk stratification model for smoldering multiple myeloma (SMM). Blood Cancer J 10(10):102. https://doi.org/10.1038/s41408-020-00366-3

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zamagni E, Nanni C, Gay F, Pezzi A, Patriarca F, Bellò M, Rambaldi I, Tacchetti P, Hillengass J, Gamberi B, Pantani L, Magarotto V, Versari A, Offidani M, Zannetti B, Carobolante F, Balma M, Musto P, Rensi M, Mancuso K, Dimitrakopoulou-Strauss A, Chauviè S, Rocchi S, Fard N, Marzocchi G, Storto G, Ghedini P, Palumbo A, Fanti S, Cavo M (2016) 18F-FDG PET/CT focal, but not osteolytic, lesions predict the progression of smoldering myeloma to active disease. Leukemia 30(2):417–422. https://doi.org/10.1038/leu.2015.291

    Article  CAS  PubMed  Google Scholar 

  6. Kyle RA, Remstein ED, Therneau TM, Dispenzieri A, Kurtin PJ, Hodnefield JM, Larson DR, Plevak MF, Jelinek DF, Fonseca R, Melton LJ 3rd, Rajkumar SV (2007) Clinical course and prognosis of smoldering (asymptomatic) multiple myeloma. N Engl J Med 356(25):2582–2590. https://doi.org/10.1056/NEJMoa070389

    Article  CAS  PubMed  Google Scholar 

  7. Rajkumar SV, Gupta V, Fonseca R, Dispenzieri A, Gonsalves WI, Larson D, Ketterling RP, Lust JA, Kyle RA, Kumar SK (2013) Impact of primary molecular cytogenetic abnormalities and risk of progression in smoldering multiple myeloma. Leukemia 27(8):1738–1744. https://doi.org/10.1038/leu.2013.86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fernández de Larrea C, Isola I, Pereira A, Cibeira MT, Magnano L, Tovar N, Rodríguez-Lobato LG, Calvo X, Aróstegui JI, Díaz T, Lozano E, Rozman M, Yagüe J, Bladé J, Rosiñol L (2018) Evolving M-protein pattern in patients with smoldering multiple myeloma: impact on early progression. Leukemia 32(6):1427–1434. https://doi.org/10.1038/s41375-018-0013-4

    Article  CAS  PubMed  Google Scholar 

  9. Ravi P, Kumar S, Larsen JT, Gonsalves W, Buadi F, Lacy MQ, Go R, Dispenzieri A, Kapoor P, Lust JA, Dingli D, Lin Y, Russell SJ, Leung N, Gertz MA, Kyle RA, Bergsagel PL, Rajkumar SV (2016) Evolving changes in disease biomarkers and risk of early progression in smoldering multiple myeloma. Blood Cancer J 6(7):e454. https://doi.org/10.1038/bcj.2016.65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dhodapkar MV, Sexton R, Waheed S, Usmani S, Papanikolaou X, Nair B, Petty N, Shaughnessy JD Jr, Hoering A, Crowley J, Orlowski RZ, Barlogie B (2014) Clinical, genomic, and imaging predictors of myeloma progression from asymptomatic monoclonal gammopathies (SWOG S0120). Blood 123(1):78–85. https://doi.org/10.1182/blood-2013-07-515239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. González-Calle V, Dávila J, Escalante F, de Coca AG, Aguilera C, López R, Bárez A, Alonso JM, Hernández R, Hernández JM, de la Fuente P, Puig N, Ocio EM, Gutiérrez NC, García-Sanz R, Mateos MV (2016) Bence Jones proteinuria in smoldering multiple myeloma as a predictor marker of progression to symptomatic multiple myeloma. Leukemia 30(10):2026–2031. https://doi.org/10.1038/leu.2016.123

    Article  CAS  PubMed  Google Scholar 

  12. Katzmann JA, Clark R, Kyle RA, Larson DR, Therneau TM, Melton LJ 3rd, Benson JT, Colby CL, Dispenzieri A, Landgren O, Kumar S, Bradwell AR, Cerhan JR, Rajkumar SV (2013) Suppression of uninvolved immunoglobulins defined by heavy/light chain pair suppression is a risk factor for progression of MGUS. Leukemia 27(1):208–212. https://doi.org/10.1038/leu.2012.189

    Article  CAS  PubMed  Google Scholar 

  13. Ludwig H, Milosavljevic D, Berlanga O, Zojer N, Hübl W, Fritz V, Harding S (2016) Suppression of the noninvolved pair of the myeloma isotype correlates with poor survival in newly diagnosed and relapsed/refractory patients with myeloma. Am J Hematol 91(3):295–301. https://doi.org/10.1002/ajh.24268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chakraborty R, Rybicki L, Nakashima MO, Dean RM, Faiman BM, Samaras CJ, Rosko N, Dysert H, Valent J, Anwer F (2020) Characterisation and prognostic impact of immunoparesis in relapsed multiple myeloma. Br J Haematol 189(6):1074–1082. https://doi.org/10.1111/bjh.16488

    Article  CAS  PubMed  Google Scholar 

  15. Costello R, Espana K, Korde N, Kwok M, Zingone A, Yancey MA, Mulquin M, Maric I, Calvo K, Tembhare PR, Yuan C, Stetler-Stevenson M, Landgren O (2011) Hevylite™ assays detect a hidden immunoparesis associated with adverse biology in myeloma precursor disease: a prospective clinical study. Blood 118(21):5065

  16. Magnano L, Fernández de Larrea C, Elena M, Cibeira MT, Tovar N, Aróstegui JI, Pedrosa F, Rosiñol L, Filella X, Yagüe J, Bladé J (2016) Prognostic impact of serum heavy/light chain pairs in patients with monoclonal gammopathy of undetermined significance and smoldering myeloma: long-term results from a single institution. Clin Lymphoma Myeloma Leuk 16(6):e71-7. https://doi.org/10.1016/j.clml.2016.02.034

    Article  PubMed  Google Scholar 

  17. International Myeloma Working Group (2003) Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the International Myeloma Working Group. Br J Haematol 121(5):749-57.

  18. Paré L, Pascual T, Seguí E, Teixidó C, Gonzalez-Cao M, Galván P, Rodríguez A, González B, Cuatrecasas M, Pineda E, Torné A, Crespo G, Martin-Algarra S, Pérez-Ruiz E, Reig Ò, Viladot M, Font C, Adamo B, Vidal M, Gaba L, Muñoz M, Victoria I, Ruiz G, Viñolas N, Mellado B, Maurel J, Garcia-Corbacho J, Molina-Vila MÁ, Juan M, Llovet JM, Reguart N, Arance A, Prat A (2018) Association between PD1 mRNA and response to anti-PD1 monotherapy across multiple cancer types. Ann Oncol 29(10):2121–2128. https://doi.org/10.1093/annonc/mdy335

    Article  PubMed  Google Scholar 

  19. Dufva O, Pölönen P, Brück O, Keränen MAI, Klievink J, Mehtonen J, Huuhtanen J, Kumar A, Malani D, Siitonen S, Kankainen M, Ghimire B, Lahtela J, Mattila P, Vähä-Koskela M, Wennerberg K, Granberg K, Leivonen SK, Meriranta L, Heckman C, Leppä S, Nykter M, Lohi O, Heinäniemi M, Mustjoki S (2020) Immunogenomic landscape of hematological malignancies. Cancer Cell 38(3):380-399.e13. https://doi.org/10.1016/j.ccell.2020.06.002

    Article  CAS  PubMed  Google Scholar 

  20. Chung DJ, Pronschinske KB, Shyer JA, Sharma S, Leung S, Curran SA, Lesokhin AM, Devlin SM, Giralt SA, Young JW (2016) T-cell exhaustion in multiple myeloma relapse after autotransplant: optimal timing of immunotherapy. Cancer Immunol Res 4(1):61–71. https://doi.org/10.1158/2326-6066.CIR-15-0055

    Article  CAS  PubMed  Google Scholar 

  21. Lozano E, Mena MP, Díaz T, Martin-Antonio B, León S, Rodríguez-Lobato LG, Oliver-Caldés A, Cibeira MT, Bladé J, Prat A, Rosiñol L, Fernández de Larrea C (2020) Nectin-2 expression on malignant plasma cells is associated with better response to TIGIT blockade in multiple myeloma. Clin Cancer Res. 26(17):4688–4698. https://doi.org/10.1158/1078-0432.CCR-19-3673

    Article  CAS  PubMed  Google Scholar 

  22. Blake SJ, Dougall WC, Miles JJ, Teng MW, Smyth MJ (2016) Molecular pathways: targeting CD96 and TIGIT for cancer immunotherapy. Clin Cancer Res 22(21):5183–5188. https://doi.org/10.1158/1078-0432.CCR-16-0933

    Article  CAS  PubMed  Google Scholar 

  23. Jiménez Juana J, Pais Tiago M, Barbosa Nuno, Campos Maria Luisa, Díaz Maria Antonia Peñalver, de Larramendi Carmen H (2018) Severe isotype-matched immunosuppression (IMI) as a potential risk factor for progression of MGUS patients. J Appl Lab Med 2(5):700–710

    Article  Google Scholar 

  24. Pika T, Lochman P, Sandecka V, Maisnar V, Minarik J, Tichy M, Zapletalova J, Solcova L, Scudla V, Hajek R (2015) Immunoparesis in MGUS - relationship of uninvolved immunoglobulin pair suppression and polyclonal immunoglobuline levels to MGUS risk categories. Neoplasma 62(5):827–832. https://doi.org/10.4149/neo_2015_100

    Article  CAS  PubMed  Google Scholar 

  25. Paiva B, Vidriales MB, Mateo G, Pérez JJ, Montalbán MA, Sureda A, Montejano L, Gutiérrez NC, García de Coca A, de las Heras N, Mateos MV, López-Berges MC, García-Boyero R, Galende J, Hernández J, Palomera L, Carrera D, Martínez R, de la Rubia J, Martín A, González Y, Bladé J, Lahuerta JJ, Orfao A, San-Miguel JF; GEM (Grupo Español de MM)/PETHEMA (Programa para el Estudio de la Terapéutica en Hemopatías Malignas) Cooperative Study Groups (2009) The persistence of immunophenotypically normal residual bone marrow plasma cells at diagnosis identifies a good prognostic subgroup of symptomatic multiple myeloma patients. Blood. 114(20):4369–72. https://doi.org/10.1182/blood-2009-05-221689.

  26. Paiva B, Pérez-Andrés M, Vídriales MB, Almeida J, de las Heras N, Mateos MV, López-Corral L, Gutiérrez NC, Blanco J, Oriol A, Hernández MT, de Arriba F, de Coca AG, Terol MJ, de la Rubia J, González Y, Martín A, Sureda A, Schmidt-Hieber M, Schmitz A, Johnsen HE, Lahuerta JJ, Bladé J, San-Miguel JF, Orfao A; GEM (Grupo Español de MM)/PETHEMA (Programa para el Estudio de la Terapéutica en Hemopatías Malignas); Myeloma Stem Cell Network (MSCNET) (2011) Competition between clonal plasma cells and normal cells for potentially overlapping bone marrow niches is associated with a progressively altered cellular distribution in MGUS vs myeloma. Leukemia. 25(4):697–706. https://doi.org/10.1038/leu.2010.320.

  27. Wang L, Young DC (2001) Suppression of polyclonal immunoglobulin production by M-proteins shows isotype specificity. Ann Clin Lab Sci 31(3):274–278

    CAS  PubMed  Google Scholar 

  28. Hoover RG, Lynch RG (1980) Lymphocyte surface membrane immunoglobulin in myeloma. II. T cells with IgA-Fc receptors are markedly increased in mice with IgA plasmacytomas. J Immunol 125(3):1280–8.

  29. Hoover RG, Dieckgraefe BK, Lake J, Kemp JD, Lynch RG (1982) Lymphocyte surface membrane immunoglobulin in myeloma. III. IgA plasmacytomas induce large numbers of circulating, adult-thymectomy-sensitive, theta +, Lyt-1–2+ lymphocytes with IgA-Fc receptors. J Immunol 129(6):2329–31.

  30. Milburn GL, Lynch RG (1982). Immunoregulation of murine myeloma in vitro. II. Suppression of MOPC-315 immunoglobulin secretion and synthesis by idiotype-specific suppressor T cells. J Exp Med 155(3):852–62. https://doi.org/10.1084/jem.155.3.852

  31. Waldschmidt TJ, Williams KR, Lynch RG (1987) Isotype-specific recognition and regulation by T cells studied with tumor models. Int Rev Immunol 2(2):203–220. https://doi.org/10.3109/08830188709044754

    Article  CAS  PubMed  Google Scholar 

  32. Heaney JLJ, Campbell JP, Iqbal G, Cairns D, Richter A, Child JA, Gregory W, Jackson G, Kaiser M, Owen R, Davies F, Morgan G, Dunn J, Drayson MT (2018) Characterisation of immunoparesis in newly diagnosed myeloma and its impact on progression-free and overall survival in both old and recent myeloma trials. Leukemia 32(8):1727–1738. https://doi.org/10.1038/s41375-018-0163-4

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sanchez E, Li M, Kitto A, Li J, Wang CS, Kirk DT, Yellin O, Nichols CM, Dreyer MP, Ahles CP, Robinson A, Madden E, Waterman GN, Swift RA, Bonavida B, Boccia R, Vescio RA, Crowley J, Chen H, Berenson JR (2012) Serum B-cell maturation antigen is elevated in multiple myeloma and correlates with disease status and survival. Br J Haematol 158(6):727–738. https://doi.org/10.1111/j.1365-2141.2012.09241

    Article  CAS  PubMed  Google Scholar 

  34. Sanchez E, Gillespie A, Tang G, Ferros M, Harutyunyan NM, Vardanyan S, Gottlieb J, Li M, Wang CS, Chen H, Berenson JR (2016) Soluble B-cell maturation antigen mediates tumor-induced immune deficiency in multiple myeloma. Clin Cancer Res 22(13):3383–3397. https://doi.org/10.1158/1078-0432.CCR-15-2224

    Article  CAS  PubMed  Google Scholar 

  35. Cherry BM, Korde N, Kwok M, Manasanch EE, Bhutani M, Mulquin M, Zuchlinski D, Yancey MA, Maric I, Calvo KR, Braylan R, Stetler-Stevenson M, Yuan C, Tembhare P, Zingone A, Costello R, Roschewski MJ, Landgren O (2013) Modeling progression risk for smoldering multiple myeloma: results from a prospective clinical study. Leuk Lymphoma 54(10):2215–2218. https://doi.org/10.3109/10428194.2013.764419

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are very thankful to The Binding Site Group Ltd. (Birmingham, UK) for the technical and material support about HLC concentration using Hevylite™ assays.

Funding

This work was supported in part by grants PI16/00423, PI19/00669, and PI20/00436 from Instituto de Salud Carlos III (Ministerio de Economía y Competitividad, co-funded by Fondo Europeo de Desarrollo Regional (FEDER)-Una manera de Hacer Europa) and 2017SGR00792 (AGAUR; Generalitat de Catalunya).

Author information

Authors and Affiliations

Authors

Contributions

II designed and performed the research, collected and analyzed data, and wrote the manuscript. DM, MM, FB, and EM performed the research and analyzed data. NT, LGR, AO, MCS, JY, MTC, LR, and JB collected data. AP contributed essential tools for research and analysis. CFL designed the research and analyzed the data. All authors reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Carlos Fernández de Larrea .

Ethics declarations

Ethics approval

Study protocol was approved by the Institutional Review Board at Hospital Clínic of Barcelona.

Consent to participate

Sample collection and clinical record review were performed after informed written consent in accordance with the Declaration of Helsinki.

Consent for publication

Sample collection and clinical record review were performed after informed written consent in accordance with the Declaration of Helsinki.

Conflict of interest

C.F.L. has received research grants and consultancy by The Binding Site. All other authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2099 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isola, I., Moreno, D.F., Moga, E. et al. Immunoparesis defined by heavy/light chain pair suppression in smoldering multiple myeloma shows initial isotype specificity and involves other isotypes in advanced disease. Ann Hematol 100, 2997–3005 (2021). https://doi.org/10.1007/s00277-021-04653-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-021-04653-2

Keywords

Navigation