Skip to main content

Advertisement

Log in

Extracellular vesicles from thalassemia patients carry iron-containing ferritin and hemichrome that promote cardiac cell proliferation

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Extracellular vesicles (EVs) are bioactive, submicron-sized membrane vesicles released from all cell types upon activation or apoptosis. EVs including microparticles (MPs) and exosomes have emerged as important mediators of cell-to-cell communication in both normal and pathological states including thalassemia (thal). However, the role of EVs derived from β-thal patients with iron overload (+ IO) and without iron overload (-IO) on cardiac cells is unclear. We hypothesized plasma EVs in thal patients containing ferritin (iron storage protein) and a denaturated hemoglobin-hemichrome that induce cardiac cell proliferation. The origins and numbers of EVs isolated from plasma of normal, thal (+ IO), and (− IO) patients were compared and determined for their iron and iron-containing proteins along with their effects on cardiac and endothelial cells. Data shows that MPs were originated from many cell sources with marked numbers of platelet origin. Only the number of RBC-derived MPs in thal (+ IO) patients was significantly high when compared to normal controls. Although MPs derived from both normal and thal patients promoted cardiac cell proliferation in a dose-dependent manner, only exosomes from thal patients promoted cardiac cell proliferation compared to the untreated. Moreover, the exosomes from thal (+ IO) potentially induce higher cardiac cell proliferation and angiogenesis in terms of tube number than thal (− IO) and normal controls. Interestingly, ferritin content in the exosomes isolated from thal (+ IO) was higher than that found in the MPs isolated from the same patient. The exosomes of thal patients with higher serum ferritin level also contained greater level of ferritin inside the exosomes. Apart from ferritin, there were trends of increasing hemichrome and iron presented in the plasma EVs and EV-treated H9C2 cells. Findings from this study support the hypothesis that EVs from β-thal patients carry iron-load proteins that leads to the induction of cardiac cell proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Weatherall DJ (1998) Thalassemia in the next millennium. Keynote address. Ann NY Acad Sci 850:1–9

    Article  CAS  PubMed  Google Scholar 

  2. Wasi P, Pootrakul S, Pootrakul P, Pravatmuang P, Winichagoon P, Fucharoen S (1980) Thalassemia in Thailand. Ann NY Acad Sci 344(1):352–363

    Article  CAS  PubMed  Google Scholar 

  3. Rund D, Rachmilewitz E (2005) β-Thalassemia. N Engl J Med 353(11):1135–1146

    Article  CAS  PubMed  Google Scholar 

  4. Taher AT, Saliba AN (2017) Iron overload in thalassemia: different organs at different rates. Hematol-Am Soc Hemat 1:265–271

    Article  Google Scholar 

  5. Olivieri NF, Nathan DG, MacMillan JH, Wayne AS, Liu PP, McGee A et al (1994) Survival in medically treated patients with homozygous beta-thalassemia. N Engl J Med 331(9):574–578

    Article  CAS  PubMed  Google Scholar 

  6. Jaiswal R, Sedger LM (2019) Intercellular vesicular transfer by exosomes, microparticles and oncosomes - implications for cancer biology and treatments. Front Oncol 9:125

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhang Y, Liu Y, Liu H, Tang WH (2019) Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci 9:19

    Article  PubMed  PubMed Central  Google Scholar 

  8. Italiano JE Jr, Mairuhu AT, Flaumenhaft R (2010) Clinical relevance of microparticles from platelets and megakaryocytes. Curr Opin Hematol 17(6):578–584

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rubin O, Canellini G, Delobel J, Lion N, Tissot JD (2012) Red blood cell microparticles: clinical relevance. Transfus Med Hemother 39(5):342–347

    Article  PubMed  PubMed Central  Google Scholar 

  10. Waldenstrom A, Genneback N, Hellman U, Ronquist G (2012) Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells. PLoS One 7(4):e34653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Record M, Carayon K, Poirot M, Silvente-Poirot S (2014) Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochim Biophys Acta. 1841(1):108–120

    Article  CAS  PubMed  Google Scholar 

  12. Tushuizen ME, Diamant M, Sturk A, Nieuwland R (2011) Cell-derived microparticles in the pathogenesis of cardiovascular disease: friend or foe? Arterioscler Thromb Vasc Biol 31(1):4–9

    Article  CAS  PubMed  Google Scholar 

  13. Konig L, Kasimir-Bauer S, Bittner AK, Hoffmann O, Wagner B, Santos Manvailer LF et al (2017) Elevated levels of extracellular vesicles are associated with therapy failure and disease progression in breast cancer patients undergoing neoadjuvant chemotherapy. Oncoimmunology 7(1):e1376153

    Article  PubMed  PubMed Central  Google Scholar 

  14. Klaihmon P, Phongpao K, Kheansaard W, Noulsri E, Khuhapinant A, Fucharoen S et al (2017) Microparticles from splenectomized β-thalassemia/HbE patients play roles on procoagulant activities with thrombotic potential. Ann Hematol 96(2):189–198

    Article  CAS  PubMed  Google Scholar 

  15. Pattanapanyasat K, Gonwong S, Chaichompoo P, Noulsri E, Lerdwana S, Sukapirom K et al (2007) Activated platelet-derived microparticles in thalassaemia. Br J Haematol 136(3):462–471

    Article  CAS  PubMed  Google Scholar 

  16. Chaichompoo P, Kumya P, Khowawisetsut L, Chiangjong W, Chaiyarit S, Pongsakul N et al (2012) Characterizations and proteome analysis of platelet-free plasma-derived microparticles in β-thalassemia/hemoglobin E patients. J Proteomics 76:239–250

    Article  CAS  PubMed  Google Scholar 

  17. Kheansaard W, Phongpao K, Paiboonsukwong K, Pattanapanyasat K, Chaichompoo P, Svasti S (2018) Microparticles from beta-thalassaemia/HbE patients induce endothelial cell dysfunction. Sci Rep 8(1):13033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Saito H (2014) Metabolism of iron stores. Nagoya J Med Sci 76(3–4):235–254

    PubMed  PubMed Central  Google Scholar 

  19. Daru J, Colman K, Stanworth SJ, De La Salle B, Wood EM, Pasricha SR (2017) Serum ferritin as an indicator of iron status: what do we need to know? Am J Clin Nutr 106(S6):1634S-1639S

    Article  PubMed  PubMed Central  Google Scholar 

  20. Recalcati S, Invernizzi P, Arosio P, Cairo G (2008) New functions for an iron storage protein: the role of ferritin in immunity and autoimmunity. J Autoimmun 30(1–2):84–89

    Article  CAS  PubMed  Google Scholar 

  21. Coffman LG, Parsonage D, D’Agostino R Jr, Torti FM, Torti SV (2009) Regulatory effects of ferritin on angiogenesis. PNAS 106(2):570–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. De Domenico I, Ward DM, Kaplan J (2009) Serum ferritin regulates blood vessel formation: A role beyond iron storage. PNAS 106(6):1683–1684

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pourmoghaddas A, Sanei H, Garakyaraghi M, Esteki-Ghashghaei F, Gharaati M (2014) The relation between body iron store and ferritin, and coronary artery disease. ARYA Atheroscler 10(1):32–36

    PubMed  PubMed Central  Google Scholar 

  24. Yeap BB, Divitini ML, Gunton JE, Olynyk JK, Beilby JP, McQuillan B et al (2015) Higher ferritin levels, but not serum iron or transferrin saturation, are associated with Type 2 diabetes mellitus in adult men and women free of genetic haemochromatosis. Clin Endocrinol 82(4):525–532

    Article  CAS  Google Scholar 

  25. Salhan P, Mahajan DS, Khurana A, Kukreja S (2014) Evaluation of serum ferritin in patients of coronary artery disease. J Evol Med Dental Sci 3(72):15221–15225

    Article  Google Scholar 

  26. Reyes C, Pons NA, Reñones CR, Gallisà JB, Val VA, Tebé C et al (2020) Association between serum ferritin and acute coronary heart disease: a population-based cohort study. Atherosclerosis 293:69–74

    Article  CAS  PubMed  Google Scholar 

  27. Pootrakul P, Vongsmasa V, La-ongpanich P, Wasi P (1981) Serum ferritin levels in thalassemias and the effect of splenectomy. Acta Haematol 66(4):244–250

    Article  CAS  PubMed  Google Scholar 

  28. Thiengtavor C, Siriworadetkun S, Paiboonsukwong K, Fucharoen S, Pattanapanyasat K, Vadolas J et al (2020) Increased ferritin levels in non-transfusion-dependent β°-thalassaemia/HbE are associated with reduced CXCR2 expression and neutrophil migration. Br J Haematol 189(1):187–198

    Article  CAS  PubMed  Google Scholar 

  29. Ferru E, Pantaleo A, Carta F, Mannu F, Khadjavi A, Gallo V et al (2014) Thalassemic erythrocytes release microparticles loaded with hemichromes by redox activation of p72Syk kinase. Haematologica 99(3):570–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Siwaponanan P, Keawvichit R, Lekmanee K, Chomanee N, Pattanapanyasat K (2021) Enumeration and phenotyping of circulating microvesicles by flow cytometry and nanoparticle tracking analysis: plasma versus serum. Int J Lab Hematol 43(3):506–514

    Article  PubMed  Google Scholar 

  31. Winterbourn CC (1990) Oxidative reactions of hemoglobin. Methods Enzymol 186:265–272

    Article  CAS  PubMed  Google Scholar 

  32. Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R et al (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7(1):1535750

    Article  PubMed  PubMed Central  Google Scholar 

  33. Truman-Rosentsvit M, Berenbaum D, Spektor L, Cohen LA, Belizowsy-Moshe S, Lifshitz L et al (2018) Ferritin is secreted via 2 distinct nonclassical vesicular pathways. Blood 131(3):342–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pattanapanyasat K, Noulsri E, Fucharoen S, Lerdwana S, Lamchiagdhase P, Siritanaratkul N et al (2004) Flow cytometric quantitation of red blood cell vesicles in thalassemia. Cytometry B Clin Cytom 57(1):23–31

    Article  PubMed  Google Scholar 

  35. Camus SM, De Moraes JA, Bonnin P, Abbyad P, Le Jeune S, Lionnet F et al (2015) Circulating cell membrane microparticles transfer heme to endothelial cells and trigger vasoocclusions in sickle cell disease. Blood 125(24):3805–3814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kittivorapart J, Crew VK, Wilson MC, Heesom KJ, Siritanaratkul N, Toye AM (2018) Quantitative proteomics of plasma vesicles identify novel biomarkers for hemoglobin E/b-thalassemic patients. Blood Adv 2(2):95–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Olatunya OS, Lanaro C, Longhini AL, Penteado CFF, Fertrin KY, Adekile A et al (2019) Red blood cells microparticles are associated with hemolysis markers and may contribute to clinical events among sickle cell disease patients. Ann Hematol 98(11):2507–2521

    Article  CAS  PubMed  Google Scholar 

  38. Hershko C, Peto TE (1987) Non-transferrin plasma iron. Br J Haematol 66(2):149–151

    Article  CAS  PubMed  Google Scholar 

  39. Lakhal-Littleton S (2019) Mechanisms of cardiac iron homeostasis and their importance to heart function. Free Radical Bio Med 133:234–237

    Article  CAS  Google Scholar 

  40. Tassiopoulos T, Stamatelos G, Zakopoulos N, Fessas P, Eliopoulos GD (1995) Low incidence of acute myocardial infarction in beta-thalassaemia trait carriers. Haematologia (Budap) 26(4):199–203

    CAS  Google Scholar 

  41. Tassiopoulos S, Deftereos S, Konstantopoulos K, Farmakis D, Tsironi M, Kyriakidis M et al (2005) Does heterozygous beta-thalassemia confer a protection against coronary artery disease? Ann N Y Acad Sci 1054:467–470

    Article  PubMed  Google Scholar 

  42. Hashemi M, Shirzadi E, Talaei Z, Moghadas L, Shaygannia I, Yavari M et al (2007) Effect of heterozygous beta-thalassaemia trait on coronary atherosclerosis via coronary artery disease risk factors: a preliminary study. Cardiovasc J Afr 18(3):165–168

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Tanaka Y, Schroit AJ (1983) Insertion of fluorescent phosphatidylserine into the plasma membrane of red blood cells. Recognition by autologous macrophages. J Biol Chem 258(18):11335–11343

    Article  CAS  PubMed  Google Scholar 

  44. Schroit AJ, Madsen JW, Tanaka Y (1985) In vivo recognition and clearance of red blood cells containing phosphatidylserine in their plasma membranes. J Biol Chem 260(8):5131–5138

    Article  CAS  PubMed  Google Scholar 

  45. Brancaleoni V, Di Pierro E, Motta I, Cappellini MD (2016) Laboratory diagnosis of thalassemia. Int J Lab Hematol 38(S1):32–40

    Article  PubMed  Google Scholar 

  46. Pretorius E, Vermeulen N, Bester J, du Plooy JL, Gericke GS (2014) The effect of iron overload on red blood cell morphology. Lancet 383(9918):722

    Article  PubMed  Google Scholar 

  47. Freyssinet JM (2003) Cellular microparticles: what are they bad or good for? J Thromb Haemost 1(7):1655–1662

    Article  CAS  PubMed  Google Scholar 

  48. Hescheler J, Meyer R, Plant S, Krautwurst D, Rosenthal W, Schultz G (1991) Morphological, biochemical, and electrophysiological characterization of a clonal cell (H9c2) line from rat heart. Circ Res 69(6):1476–1486

    Article  CAS  PubMed  Google Scholar 

  49. Sipido KR, Marban E (1991) L-type calcium channels, potassium channels, and novel nonspecific cation channels in a clonal muscle cell line derived from embryonic rat ventricle. Circ Res 69(6):1487–1499

    Article  CAS  PubMed  Google Scholar 

  50. Watkins SJ, Borthwick GM, Arthur HM (2011) The H9C2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro. Vitro Cell Dev Biol Anim 47(2):125–131

    Article  CAS  Google Scholar 

  51. Todorova D, Simoncini S, Lacroix R, Sabatier F, Dignat-George F (2017) Extracellular vesicles in angiogenesis. Circ Res 120(10):1658–1673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Witek P, Korga A, Burdan F, Ostrowska M, Nosowska B, Iwan M et al (2016) The effect of a number of H9C2 rat cardiomyocytes passage on repeatability of cytotoxicity study results. Cytotechnology 68(6):2407–2415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ménard C, Pupier S, Mornet D, Kitzmann M, Nargeot J, Lory P (1999) Modulation of L-type calcium channel expression during retinoic acid-induced differentiation of H9C2 cardic cells. J Biol Chem 274(41):29063–29070

    Article  PubMed  Google Scholar 

  55. Di Noto G, Chiarini M, Paolini L, Mazzoldi EL, Giustini V, Radeghieri A et al (2014) Immunoglobulin free light chains and GAGs mediate multiple myeloma extracellular vesicles uptake and secondary NfkB nuclear translocation. Front Immunol 5:517

    PubMed  PubMed Central  Google Scholar 

  56. Gonzales PA, Pisitkun T, Hoffert JD, Tchapyjnikov D, Star RA, Kleta R et al (2009) Large-scale proteomics and phosphoproteomics of urinary exosomes. J Am Soc Nephrol 20(2):363–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Atama H, Ginsburg H (1995) Heme degradation in the presence of glutathione. A proposed mechanism to account for the high levels of non-heme iron found in the membrane of hemoglobinopathic red blood cells. J Biol Chem 270(42):24876–24883

    Google Scholar 

  58. Serrano-Pertierra E, Oliveira-Rodriguez M, Rivas M, Oliva P, Villafani J, Navarro A et al (2019) Characterization of plasma-derived extracellular vesicles isolated by different methods: a comparison study. Bioengineering 6(1):8

    Article  CAS  PubMed Central  Google Scholar 

  59. Klymiuk MC, Balz N, Elashry MI, Heimann M, Wenisch S, Arnhold S (2019) Exosomes isolation and identification from equine mesenchymal stem cells. BMC Vet Res 15(1):42

    Article  PubMed  PubMed Central  Google Scholar 

  60. Oudit GY, Sun H, Trivieri MG, Koch SE, Dawood F, Ackerley C et al (2003) L-type Ca2+ channels provide a major pathway for iron entry into cardiomyocytes in iron-overload cardiomyopathy. Nat Med 9(9):1187–1194

    Article  CAS  PubMed  Google Scholar 

  61. Mulcahy LA, Pink RC, Carter DR (2014) Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles 3:24641

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the kind co-operation of thalassemia patients. We thank the primary care physicians and nurses at the Division of Hematology, Siriraj Hospital, for providing us important clinical supports. We would also like to thank Professor Aftab A. Ansari of the Department of Pathology and Laboratory, Emory University School of Medicine, Atlanta, GA, for his valuable comments and suggestions.

Funding

This work was supported by the Thailand Research Fund (TRF) – Distinguished Research Professor Grant, grant number DPG5980001, and the research grant from Faculty of Medicine Siriraj Hospital, Mahidol University. L.K was also supported by Siriraj Chalermprakiat Foundation, Faculty of Medicine Siriraj Hospital, Mahidol University.

Author information

Authors and Affiliations

Authors

Contributions

KP: research idea formation and supervision; AA: performed the experiment and data analysis; AK: patient recruitment and diagnosis; AA, PS, SS, KS, and LK: data analysis; AA and KP: manuscript writing. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Ladawan Khowawisetsut or Kovit Pattanapanyasat.

Ethics declarations

Ethics approval and consent to participate

All procedures performed in studies involving human participants were in accordance with the 1964 Helsinki declaration and its later amendments or comparable standards. The study was approved by Siriraj Hospital Institutional Review Board (SI-IRB), approval number Si 239/2018. Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atipimonpat, A., Siwaponanan, P., Khuhapinant, A. et al. Extracellular vesicles from thalassemia patients carry iron-containing ferritin and hemichrome that promote cardiac cell proliferation. Ann Hematol 100, 1929–1946 (2021). https://doi.org/10.1007/s00277-021-04567-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-021-04567-z

Keywords

Navigation