Skip to main content

Advertisement

Log in

Evaluation of the need for cytoreduction and its potential carcinogenicity in children and young adults with myeloproliferative neoplasms

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Myeloproliferative neoplasms are rare at a young age, and few reports have described the disease characteristics and outcomes in this group. This study aimed to elucidate the clinical course of essential thrombocythemia (ET) and polycythemia vera (PV) in children and young adults aged <39 years focusing on thromboembolic events (TE) and second primary malignancies (SPMs). A total of 990 patients who were diagnosed from 2008 to 2017 were included by analyzing the Health Insurance Review and Assessment Service database in Korea. The incidence was 2.53 per 1,000,000 for ET (643 patients; 276 male patients; median 31 years) and 1.37 per 1,000,000 for PV (347 patients; 309 male patients; median 32 years). Three ET patients developed secondary acute myelogenous leukemia and three developed secondary myelofibrosis. The 5-year cumulative incidence of TE was 14.2% in ET and 21.3% in PV. Thus, the incidence was higher in PV; in particular, arterial TE (ATE) was evidently higher in PV than in ET. The 5-year cumulative incidence of SPMs was 2.5% in ET and 2.6% in PV. While the use of both aspirin and hydroxyurea reduced the incidence of ATE, hydroxyurea significantly increased the incidence of SPMs. The incidence of ET and PV was very low, and ET was more common than PV in children and young adults. The high incidence of TE in young patients suggests the importance of thrombosis prevention. However, hydroxyurea appears to increase the incidence of SPMs; therefore, the risks and benefits should be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

ALL:

Acute lymphoblastic leukemia

ATE:

Arterial thromboembolic events

ACS:

Acute coronary syndrome

AYA:

Adolescent and young adults

BCS:

Budd-Chiari syndrome

CVT:

Cerebral vein thrombosis

DVT:

Deep vein thrombosis

ET:

Essential thrombocythemia

HIRA:

Health Insurance Review and Assessment Service

MPN:

Myeloproliferative neoplasms

NHIS:

National Health Insurance Service

OS:

Overall survival

PE:

Pulmonary embolism

PV:

Polycythemia vera

PMF:

Primary myelofibrosis

SAML:

Secondary acute myeloid leukemia

SMF:

Secondary myelofibrosis

SPMs:

Second primary malignancies

TE:

Thromboembolic events

VTE:

Venous thromboembolic events

References

  1. Tefferi A, Pardanani A (2015) Myeloproliferative neoplasms: a contemporary review. JAMA Oncol 1:97–105. https://doi.org/10.1001/jamaoncol.2015.89

    Article  PubMed  Google Scholar 

  2. Barbui T, Thiele J, Gisslinger H et al (2018) The 2016 WHO classification and diagnostic criteria for myeloproliferative neoplasms: document summary and in-depth discussion. Blood Cancer J 8:1–11. https://doi.org/10.1038/s41408-018-0054-y

    Article  Google Scholar 

  3. Tefferi A, Barbui T (2019) Polycythemia vera and essential thrombocythemia: 2019 update on diagnosis, risk-stratification and management. Am J Hematol 94:133–143. https://doi.org/10.1002/ajh.25303

    Article  PubMed  Google Scholar 

  4. Landtblom AR, Bower H, Andersson TML et al (2018) Second malignancies in patients with myeloproliferative neoplasms: a population-based cohort study of 9379 patients. Leukemia 32:2203–2210. https://doi.org/10.1038/s41375-018-0027-y

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hong J, Lee JH, Byun JM et al (2019) Risk of disease transformation and second primary solid tumors in patients with myeloproliferative neoplasms. Blood Adv 3:3700–3708. https://doi.org/10.1182/bloodadvances.2019000655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mehta J, Wang H, Iqbal SU, Mesa R (2014) Epidemiology of myeloproliferative neoplasms in the United States. Leuk Lymphoma 55:595–600. https://doi.org/10.3109/10428194.2013.813500

    Article  PubMed  Google Scholar 

  7. Titmarsh GJ, Duncombe AS, McMullin MF et al (2014) How common are myeloproliferative neoplasms? A systematic review and meta-analysis. Am J Hematol 89:581–587. https://doi.org/10.1002/ajh.23690

    Article  PubMed  Google Scholar 

  8. Park EH, Lee H, Won YJ et al (2015) Nationwide statistical analysis of myeloid malignancies in Korea: incidence and survival rate from 1999 to 2012. Blood Res 50:204–217. https://doi.org/10.5045/br.2015.50.4.204

    Article  PubMed  PubMed Central  Google Scholar 

  9. Koschmieder S, Mughal T, Hasselbalch H et al (2016) Myeloproliferative neoplasms and inflammation: whether to target the malignant clone or the inflammatory process or both. Leukemia 30:1018–1024. https://doi.org/10.1038/leu.2016.12

    Article  CAS  PubMed  Google Scholar 

  10. Mughal TI, Pemmaraju N, Radich JP et al (2019) Emerging translational science discoveries, clonal approaches, and treatment trends in chronic myeloproliferative neoplasms. Hematol Oncol 37:240–252. https://doi.org/10.1002/hon.2622

    Article  PubMed  Google Scholar 

  11. Cazzola M, Kralovics R (2014) From Janus kinase 2 to calreticulin: the clinically relevant genomic landscape of myeloproliferative neoplasms. Blood 123:3714–3719. https://doi.org/10.1182/blood-2014-03-530865

    Article  CAS  PubMed  Google Scholar 

  12. Shirane S, Araki M, Morishita S et al (2015) JAK2, CALR, and MPL mutation spectrum in Japanese patients with myeloproliferative neoplasms. Haematologica 100:e46. https://doi.org/10.3324/haematol.2014.115113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hofmann I (2015) Myeloproliferative neoplasms in children. J Hematop 8:143–157. https://doi.org/10.1007/s11899-020-00571-8

    Article  PubMed  Google Scholar 

  14. Boddu P, Masarova L, Verstovsek S et al (2018) Patient characteristics and outcomes in adolescents and young adults with classical Philadelphia chromosome-negative myeloproliferative neoplasms. Ann Hematol 97:109–121. https://doi.org/10.1007/s00277-017-3165-9

    Article  PubMed  Google Scholar 

  15. Mughal TI, Deininger MW, Kucine N et al (2019) Children and adolescents with chronic myeloproliferative neoplasms: still an unmet biological and clinical need? Hemasphere 3:e283. https://doi.org/10.1097/HS9.0000000000000283

    Article  PubMed  PubMed Central  Google Scholar 

  16. Szuber N, Vallapureddy RR, Penna D et al (2018) Myeloproliferative neoplasms in the young: Mayo Clinic experience with 361 patients age 40 years or younger. Am J Hematol 93:1474–1484. https://doi.org/10.1002/ajh.25270

    Article  CAS  PubMed  Google Scholar 

  17. Giona F, Teofili L, Moleti ML et al (2012) Thrombocythemia and polycythemia in patients younger than 20 years at diagnosis: clinical and biologic features, treatment, and long-term outcome. Blood 119:2219–2227. https://doi.org/10.1182/blood-2011-08-371328

    Article  CAS  PubMed  Google Scholar 

  18. Karow A, Nienhold R, Lundberg P et al (2015) Mutational profile of childhood myeloproliferative neoplasms. Leukemia 29:2407–2409. https://doi.org/10.1038/leu.2015.205

    Article  CAS  PubMed  Google Scholar 

  19. Xia D, Hasserjian RP (2016) Molecular testing for JAK 2, MPL, and CALR in myeloproliferative neoplasms. Am J Hematol 91:1277–1280. https://doi.org/10.1002/ajh.24578

    Article  CAS  PubMed  Google Scholar 

  20. Kim L, Kim JA, Kim S (2014) A guide for the utilization of health insurance review and assessment service national patient samples. Epidemiol Health 36:e2014008. https://doi.org/10.4178/epih/e2014008

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ianotto JC, Curto-Garcia N, Lauermanova M et al (2019) Characteristics and outcomes of patients with essential thrombocythemia or polycythemia vera diagnosed before 20 years of age: a systematic review. Haematologica 104:1580–1588. https://doi.org/10.3324/haematol.2018.200832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lim Y, Lee JO, Bang SM (2016) Incidence, survival and prevalence statistics of classical myeloproliferative neoplasm in Korea. J Korean Med Sci 31:1579–1585. https://doi.org/10.3346/jkms.2016.31.10.1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Campbell PJ, Scott LM, Buck G et al (2005) Definition of subtypes of essential thrombocythaemia and relation to polycythaemia vera based on JAK2 V617F mutation status: a prospective study. Lancet 366:1945–1953. https://doi.org/10.1016/S0140-6736(05)67785-9

    Article  CAS  PubMed  Google Scholar 

  24. Levine RL, Wadleigh M, Cools J et al (2005) Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7:387–397. https://doi.org/10.1016/j.ccr.2005.03.023

    Article  CAS  PubMed  Google Scholar 

  25. Baxter EJ, Scott LM, Campbell PJ et al (2005) Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365:1054–1061. https://doi.org/10.1016/S0140-6736(05)71142-9

    Article  CAS  PubMed  Google Scholar 

  26. James C, Ugo V, Le Couédic JP et al (2005) A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434:1144–1148. https://doi.org/10.1038/nature03546

    Article  CAS  PubMed  Google Scholar 

  27. Jones AV, Kreil S, Zoi K et al (2005) Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood 106:2162–2168. https://doi.org/10.1182/blood-2005-03-1320

    Article  CAS  PubMed  Google Scholar 

  28. Pardanani AD, Levine RL, Lasho T et al (2006) MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 108:3472–3476. https://doi.org/10.1182/blood-2006-04-018879

    Article  CAS  PubMed  Google Scholar 

  29. Brecqueville M, Rey J, Bertucci F et al (2012) Mutation analysis of ASXL1, CBL, DNMT3A, IDH1, IDH2, JAK2, MPL, NF1, SF3B1, SUZ12, and TET2 in myeloproliferative neoplasms. Genes Chromosomes Cancer 51:743–755. https://doi.org/10.1002/gcc.21960

    Article  CAS  PubMed  Google Scholar 

  30. Barzilai M, Kirgner I, Avivi I et al (2019) Characteristics and outcomes of young adults with Philadelphia-negative myeloproliferative neoplasms. Eur J Haematol 2102:504–508. https://doi.org/10.1111/ejh.13232

    Article  Google Scholar 

  31. Lim Y, Lee JO, Kim SH et al (2015) Prediction of thrombotic and hemorrhagic events during polycythemia vera or essential thrombocythemia based on leukocyte burden. Thromb Res 135:846–851. https://doi.org/10.1016/j.thromres.2015.02.023

    Article  CAS  PubMed  Google Scholar 

  32. Rungjirajittranon T, Owattanapanich W, Ungprasert P et al (2019) A systematic review and meta-analysis of the prevalence of thrombosis and bleeding at diagnosis of Philadelphia-negative myeloproliferative neoplasms. BMC Cancer 19:184. https://doi.org/10.1186/s12885-019-5387-9

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lavu S, Szuber N, Mudireddy M et al (2018) Splanchnic vein thrombosis in patients with myeloproliferative neoplasms: the Mayo clinic experience with 84 consecutive cases. Am J Hematol 93:E61–E64. https://doi.org/10.1002/ajh.24993

    Article  PubMed  Google Scholar 

  34. Tafesh L, Musgrave K, Roberts W et al (2019) Myeloproliferative neoplasms in children and adolescents and thrombosis at unusual sites: the role of driver mutations. J Pediatr Hematol Oncol 41:490–493. https://doi.org/10.1097/MPH.0000000000001173

    Article  CAS  PubMed  Google Scholar 

  35. Brabrand M, Frederiksen H (2020) Risks of solid and lymphoid malignancies in patients with myeloproliferative neoplasms: clinical implications. Cancers (Basel) 12:3061. https://doi.org/10.3390/cancers12103061

    Article  CAS  Google Scholar 

  36. Marchetti M, Ghirardi A, Masciulli A et al (2020) Second cancers in MPN: survival analysis from an international study. Am J Hematol 95:295–301. https://doi.org/10.1002/ajh.25700

    Article  CAS  PubMed  Google Scholar 

  37. De Stefano V, Ghirardi A, Masciulli A et al (2020) Arterial thrombosis in Philadelphia-negative myeloproliferative neoplasms predicts second cancer: a case-control study. Blood 135:381–386. https://doi.org/10.1182/blood.2019002614

    Article  PubMed  Google Scholar 

  38. Barbui T, Ghirardi A, Masciulli A et al (2019) Second cancer in Philadelphia negative myeloproliferative neoplasms (MPN-K). A nested case-control study. Leukemia 33:1996–2005. https://doi.org/10.1038/s41375-019-0487-8

    Article  CAS  PubMed  Google Scholar 

  39. Korean Statistical Information Service. https://kosis.kr/index/index.do. Accessed 28 January 2021

Download references

Funding

This work was supported by a research fund from Seoul National University Bundang Hospital (grant number: SNUBH 13-2018-018).

Author information

Authors and Affiliations

Authors

Contributions

S.-M.B. conceived the original idea for the study; H.S.C., J.H., S.M.H., J.H.L., Y.M., S.-A.K., J.Y.L., J.-O.L., and S.-M.B. contributed to analysis of the data and reviewed the manuscript; J.H.L. contributed to data collection and curation; S.-M.B. and J.H.L. conducted statistical analysis and interpretation of the data; and H.S.C. and S.-M.B. wrote the manuscript.

Corresponding author

Correspondence to Soo-Mee Bang.

Ethics declarations

Ethics approval

This study was exempted by the Institutional Review Board of Seoul National University Bundang Hospital (IRB Approval No. X-1803/459-905), and the need for informed consent from each patient was waived, as the authors did not have access to any identifying information. All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 201 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, H.S., Hong, J., Hwang, S.M. et al. Evaluation of the need for cytoreduction and its potential carcinogenicity in children and young adults with myeloproliferative neoplasms. Ann Hematol 100, 2567–2574 (2021). https://doi.org/10.1007/s00277-021-04527-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-021-04527-7

Keywords

Navigation