Skip to main content
Log in

Influence of UGT1A1 promoter polymorphism, α-thalassemia and βs haplotype in bilirubin levels and cholelithiasis in a large sickle cell anemia cohort

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Hyperbilirubinemia in patients with sickle cell anemia (SCA) as a result of enhanced erythrocyte destruction, lead to cholelithiasis development in a subset of patients. Evidence suggests that hyperbilirubinemia may be related to genetic variations, such as the UGT1A1 gene promoter polymorphism, which causes Gilbert syndrome (GS). Here, we aimed to determine the frequencies of UGT1A1 promoter alleles, alpha thalassemia, and βS haplotypes and analyze their association with cholelithiasis and bilirubin levels. The UGT1A1 alleles, −3.7 kb alpha thalassemia deletion and βS haplotypes were determined using DNA sequencing and PCR-based assays in 913 patients with SCA. The mean of total and unconjugated bilirubin and the frequency of cholelithiasis in GS patients were higher when compared to those without this condition, regardless of age (P < 0.05). Cumulative analysis demonstrated an early age-at-onset for cholelithiasis in GS genotypes (P < 0.05). Low fetal hemoglobin (HbF) levels and normal alpha thalassemia genotype were related to cholelithiasis development (P > 0.05). However, not cholelithiasis but total and unconjugated bilirubin levels were associated with βS haplotype. These findings confirm in a large cohort that the UGT1A1 polymorphism influences cholelithiasis and hyperbilirubinemia in SCA. HbF and alpha thalassemia also appear as modulators for cholelithiasis risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kato GJ, Piel FB, Reid CD, Gaston MH, Ohene-Frempong K, Krishnamurti L, Smith WR, Panepinto JA, Weatherall DJ, Costa FF, Vichinsky EP (2018) Sickle cell disease. Nat Rev Dis Prim 4:1–22. https://doi.org/10.1038/nrdp.2018.10

    Article  Google Scholar 

  2. Ballas SK, Lieff S, Benjamin LJ, Dampier CD, Heeney MM, Hoppe C, Johnson CS, Rogers ZR, Smith-Whitley K, Wang WC, Telen MJ, on Behalf of the Investigators at the Comprehensive Sickle Cell Centers (2010) Definitions of the phenotypic manifestations of sickle cell disease. Am J Hematol 85:6–13. https://doi.org/10.1002/ajh.21550

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kutlar A (2007) Sickle cell disease: A multigenic perspective of a single gene disorder. Hemoglobin 31:209–224. https://doi.org/10.1080/03630260701290233

    Article  CAS  PubMed  Google Scholar 

  4. Kato GJ, Steinberg MH, Gladwin MT (2017) Intravascular hemolysis and the pathophysiology of sickle cell disease. J Clin Invest 127:750–760. https://doi.org/10.1172/JCI89741

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chaar V, Kéclard L, Diara JP et al (2005) Association of UGT1A1 polymorphism with prevalence and age at onset of cholelithiasis in sickle cell anemia. Haematologica 90:188–193

    CAS  PubMed  Google Scholar 

  6. de Azevedo LA, Bonazzoni J, Wagner SC, Farias MG, Bittar CM, Daudt L, de Castro SM (2017) Do alpha thalassemia, fetal hemoglobin, and the UGT1A1 polymorphism have an influence on serum bilirubin levels and cholelithiasis in patients with sickle cell disease? Mol Diagnosis Ther 21:437–442. https://doi.org/10.1007/s40291-017-0283-y

    Article  CAS  Google Scholar 

  7. Bosma PJ, Chowdhury JR, Bakker C, Gantla S, de Boer A, Oostra BA, Lindhout D, Tytgat GNJ, Jansen PLM, Elferink RPJO, Chowdhury NR (1995) The genetic basis of the reduced expression of bilirubin udp-glucuronosyltransferase 1 in Gilbert’s syndrome. N Engl J Med 333:1171–1175. https://doi.org/10.1056/NEJM199511023331802

    Article  CAS  PubMed  Google Scholar 

  8. Hu R-T, Wang N-Y, Huang M-J, Huang CS, Chen DS, Yang SS (2014) Multiple variants in UGT1A1 gene are factors to develop indirect hyper-bilirubinemia. Hepatobiliary Surg Nutr 3:194–198. https://doi.org/10.3978/j.issn.2304-3881.2014.08.04

    Article  PubMed  PubMed Central  Google Scholar 

  9. Servedio V, d’Apolito M, Maiorano N et al (2005) Spectrum of UGT1A1 mutations in Crigler-Najjar (CN) syndrome patients: identification of twelve novel alleles and genotype-phenotype correlation. Hum Mutat 25:325. https://doi.org/10.1002/humu.9322

    Article  PubMed  Google Scholar 

  10. Chiddarwar AS, D’Silva SZ, Colah RB, Ghosh K, Mukherjee MB (2018) Genetic lesions in the UGT1A1 genes among Gilbert’s syndrome patients from India. Mol Biol Rep 45:2733–2739. https://doi.org/10.1007/s11033-018-4305-6

    Article  CAS  PubMed  Google Scholar 

  11. Ostanek B, Furlan D, Mavec T, Lukac-Bajalo J (2007) UGT1A1(TA)n promoter polymorphism-a new case of a (TA)8 allele in Caucasians. Blood Cells, Mol Dis 38:78–82. https://doi.org/10.1016/j.bcmd.2006.10.160

    Article  CAS  Google Scholar 

  12. Tintos-hernández JA, Perea FJ, Ibarra B et al (2012) Wayward effect of polymorphism ( TA ) 8 in the Promoter Region of UGT1A1 Gene Efecto Caprichoso del Polimorfismo ( TA ) 8 en la Región del Promotor del Gene UGT1A1 en una Familia Mexicana. West Indian Med J 61:81–83

    PubMed  Google Scholar 

  13. AlFadhli S, Al-Jafer H, Hadi M et al (2013) The effect of UGT1A1 promoter polymorphism in the development of hyperbilirubinemia and cholelithiasis in hemoglobinopathy patients. PLoS One 8:2–8. https://doi.org/10.1371/journal.pone.0077681

    Article  CAS  Google Scholar 

  14. Bosma PJ (2003) Inherited disorders of bilirubin metabolism. J Hepatol 38:107–117. https://doi.org/10.1016/S0168-8278(02)00359-8

    Article  CAS  PubMed  Google Scholar 

  15. Chaouch L, Talbi E, Moumni I, Ben Chaabene A, Kalai M, Chaouachi D, Mallouli F, Ghanem A, Abbes S (2013) Early complication in sickle cell anemia children due to A(TA) nTAA polymorphism at the promoter of UGT1A1 gene. Dis Markers 35:1–6. https://doi.org/10.1155/2013/173474

    Article  CAS  Google Scholar 

  16. Huang MJ, Chen YC, Huang YY, Yang SS, Chen PL, Huang CS (2019) Effect of UDP-glucuronosyltransferase 1A1 activity on risk for developing Gilbert’s syndrome. Kaohsiung J Med Sci 35:1–8. https://doi.org/10.1002/kjm2.12077

    Article  CAS  Google Scholar 

  17. Haider MZ, Ashebu S, Aduh P, Adekile AD (1998) Influence of α-thalassemia on cholelithiasis in SS patients with elevated Hb F. Acta Haematol 100:147–150. https://doi.org/10.1159/000040890

    Article  CAS  PubMed  Google Scholar 

  18. Vasavda N, Menzel S, Kondaveeti S, Maytham E, Awogbade M, Bannister S, Cunningham J, Eichholz A, Daniel Y, Okpala I, Fulford T, Thein SL (2007) The linear effects of α-thalassaemia, the UGT1A1 and HMOX1 polymorphisms on cholelithiasis in sickle cell disease. Br J Haematol 138:263–270. https://doi.org/10.1111/j.1365-2141.2007.06643.x

    Article  CAS  PubMed  Google Scholar 

  19. Davis L, Dibner M, Battey J (1986) Basic methods in molecular biology

  20. Monaghan G, Ryan M, Seddon R et al (1996) Genetic variation in bilirubin UDP-glucuronosyltransferase gene promoter and Gilbert’s syndrome. Lancet 347:557–558. https://doi.org/10.1016/S0140-6736(96)91266-0

    Article  Google Scholar 

  21. Dodé C, Krishnamoorthy R, Lamb J, Rochette J (1992) Rapid analysis of -alpha 3.7 thalassaemia and alpha alpha alpha anti 3.7 triplication by enzymatic amplification analysis. Br J Haematol 82:105–111

    Google Scholar 

  22. Powars DR (1991) Beta S-Gene-Cluster Haplotypes in Sickle Cell Anemia. Clinical and Hematologic Features. Semin Hematol 28:202–208

    CAS  PubMed  Google Scholar 

  23. Martins RA, Soares RS, De Vito FB et al (2017) Cholelithiasis and its complications in sickle cell disease in a university hospital. Rev Bras Hematol Hemoter 39:28–31. https://doi.org/10.1016/j.bjhh.2016.09.009

    Article  PubMed  Google Scholar 

  24. Driss A, Asare KO, Hibbert JM, Gee BE, Adamkiewicz TV, Stiles JK (2009) Sickle cell disease in the post genomic era: a monogenic disease with a polygenic phenotype. Genomics Insights 2:23–48. https://doi.org/10.4137/gei.s2626

    Article  CAS  PubMed Central  Google Scholar 

  25. Habara A, Steinberg MH (2016) Minireview: genetic basis of heterogeneity and severity in sickle cell disease. Exp Biol Med 241:689–696. https://doi.org/10.1177/1535370216636726

    Article  CAS  Google Scholar 

  26. Carneiro-Proietti ABF, Kelly S, Miranda Teixeira C, Sabino EC, Alencar CS, Capuani L, Salomon Silva TP, Araujo A, Loureiro P, Máximo C, Lobo C, Flor-Park MV, Rodrigues DOW, Mota RA, Gonçalez TT, Hoppe C, Ferreira JE, Ozahata M, Page GP, Guo Y, Preiss LR, Brambilla D, Busch MP, Custer B, the International Component of the NHLBI Recipient Epidemiology and Donor Evaluation Study (REDS-III) (2018) Clinical and genetic ancestry profile of a large multi-centre sickle cell disease cohort in Brazil. Br J Haematol 182:895–908. https://doi.org/10.1111/bjh.15462

    Article  CAS  PubMed  Google Scholar 

  27. Premawardhena A, Fisher CA, Liu YT, Verma IC, de Silva S, Arambepola M, Clegg JB, Weatherall DJ (2003) The global distribution of length polymorphisms of the promoters of the glucuronosyltransferase 1 gene (UGT1A1): hematologic and evolutionary implications. Blood Cells, Mol Dis 31:98–101. https://doi.org/10.1016/S1079-9796(03)00071-8

    Article  CAS  Google Scholar 

  28. Carpenter SL, Lieff S, Howard TA, Eggleston B, Ware RE (2008) UGT1A1 promoter polymorphisms and the development of hyperbilirubinemia and gallbladder disease in children with sickle cell anemia. Am J Hematol 83:800–803. https://doi.org/10.1002/ajh.21264

    Article  PubMed  Google Scholar 

  29. Fertrin KY, Gonçalves MS, Saad STO, Costa FF (2002) Frequencies of UDP-glucuronosyltransferase 1 (UGT1A1) gene promoter polymorphisms among distinct ethnic groups from Brazil. Am J Med Genet 108:117–119. https://doi.org/10.1002/ajmg.10209

    Article  CAS  PubMed  Google Scholar 

  30. Fertrin KY, Melo MB, Assis ÂM, Saad STO, Costa FF (2003) UDP-glucuronosyltransferase 1 gene promoter polymorphism is associated with increased serum bilirubin levels and cholecystectomy in patients with sickle cell anemia. Clin Genet 64:160–162. https://doi.org/10.1034/j.1399-0004.2003.00113.x

    Article  CAS  PubMed  Google Scholar 

  31. Carvalho CG, Castro SM, Santin AP, de Azevedo LA, Pereira MLS, Giugliani R (2010) Polymorphic variants of UGT1A1 in neonatal jaundice in Southern Brazil. J Trop Pediatr 56:366–367. https://doi.org/10.1093/tropej/fmp131

    Article  PubMed  Google Scholar 

  32. Christine S, Narcisse E, Philippe J et al (2016) Genetic modulators of sickle cell disease in French Guiana: markers of the slave trade. Am J Hum Biol 28:811–816. https://doi.org/10.1002/ajhb.22871

    Article  Google Scholar 

  33. Mezzacappa MA, Facchini FP, Pinto AC, Cassone AEL, Souza DS, Bezerra MAC, Albuquerque DM, Saad STO, Costa FF (2010) Clinical and genetic risk factors for moderate hyperbilirubinemia in Brazilian newborn infants. J Perinatol 30:819–826. https://doi.org/10.1038/jp.2010.48

    Article  CAS  PubMed  Google Scholar 

  34. Aggarwal A, Jamwal M, Sharma P, Sachdeva MUS, Bansal D, Malhotra P, Das R (2020) Deciphering molecular heterogeneity of Indian families with hereditary spherocytosis using targeted next-generation sequencing: first South Asian study. Br J Haematol 188:784–795. https://doi.org/10.1111/bjh.16244

    Article  CAS  PubMed  Google Scholar 

  35. Joly P, Renoux C, Lacan P, Bertrand Y, Cannas G, Garnier N, Cuzzubbo D, Kebaïli K, Renard C, Gauthier A, Pialoux V, Martin C, Romana M, Connes P (2017) UGT1A1 (TA)n genotype is not the major risk factor of cholelithiasis in sickle cell disease children. Eur J Haematol 98:296–301. https://doi.org/10.1111/ejh.12838

    Article  CAS  PubMed  Google Scholar 

  36. Adekile A, Kutlar F, Mckie K et al (2005) The influence of uridine diphosphate glucuronosyl transferase 1A promoter polymorphisms , b S -globin gene haplotype , co-inherited a -thalassemia trait and Hb F on steady-state serum bilirubin levels in sickle cell anemia. Eur J Haematol 75:150–155. https://doi.org/10.1111/j.1600-0609.2005.00477.x

    Article  CAS  PubMed  Google Scholar 

  37. Hamad Z, Aljedai A, Halwani R, AlSultan A (2013) UGT1A1 promoter polymorphism associated with serum bilirubin level in Saudi patients with sickle cell disease. Ann Saudi Med 33:372–376. 10.5144/0256-4947.2013.372

  38. Alkindi SY, Pathare A, Al Zadjali S et al (2015) Serum total bilirubin, not cholelithiasis, is influenced by UGT1A1 polymorphism, alpha thalassemia and βs haplotype: first report on comparison between Arab-Indian and African βs genes. Mediterr J Hematol Infect Dis 7:1–7. https://doi.org/10.4084/MJHID.2015.060

    Article  Google Scholar 

  39. Passon RG, Howard TA, Zimmerman SA, Schultz WH, Ware RE (2001) Influence of bilirubin uridine diphosphate- glucuronosyltransferase 1a promoter polymorphisms on serum bilirubin levels and cholelithiasis in children with sickle cell anemia. Am J Pediatr Hematol Oncol 23:448–451. https://doi.org/10.1097/00043426-200110000-00011

    Article  CAS  Google Scholar 

  40. Martins R, Morais A, Dias A, Soares I, Rolão C, Ducla-Soares JL, Braga L, Seixas T, Nunes B, Olim G, Romão L, Lavinha J, Faustino P (2008) Early modification of sickle cell disease clinical course by UDP-glucuronosyltransferase 1A1 gene promoter polymorphism. J Hum Genet 53:524–528. https://doi.org/10.1007/s10038-008-0281-3

    Article  CAS  PubMed  Google Scholar 

  41. Olatunya OS, Albuquerque DM, Akanbi GO, Aduayi OS, Taiwo AB, Faboya OA, Kayode TS, Leonardo DP, Adekile A, Costa FF (2019) Uridine diphosphate glucuronosyl transferase 1A (UGT1A1) promoter polymorphism in young patients with sickle cell anaemia: report of the first cohort study from Nigeria. BMC Med Genet 20:1–8. https://doi.org/10.1186/s12881-019-0899-3

    Article  Google Scholar 

  42. Haverfield EV, McKenzie CA, Forrester T et al (2005) UGT1A1 variation and gallstone formation in sickle cell disease. Blood 105:968–972. https://doi.org/10.1182/blood-2004-02-0521

    Article  CAS  PubMed  Google Scholar 

  43. Sheehan VA, Luo Z, Flanagan JM, Howard TA, Thompson BW, Wang WC, Kutlar A, Ware RE, BABY HUG Investigators (2013) Genetic modifiers of sickle cell anemia in the baby hug cohort: influence on laboratory and clinical phenotypes. Am J Hematol 88:571–576. https://doi.org/10.1002/ajh.23457

    Article  CAS  PubMed  Google Scholar 

  44. Domingos IF, Falcão DA, Hatzlhofer BL, Cunha AF, Santos MN, Albuquerque DM, Fertrin KY, Costa FF, Azevedo RC, Machado CG, Araújo AS, Lucena-Araujo AR, Bezerra MA (2014) Influence of the β s haplotype and α -thalassemia on stroke development in a Brazilian population with sickle cell anaemia. Ann Hematol 93:1123–1129. https://doi.org/10.1007/s00277-014-2016-1

    Article  CAS  PubMed  Google Scholar 

  45. Bezerra MAC, Santos MNN, Araújo AS, Gomes YM, Abath FGC, Bandeira FMGC (2007) Molecular variations linked to the grouping of beta- and alpha-globin genes in neonatal patients with sickle cell disease in the State of Pernambuco, Brazil. Hemoglobin 31:83–88. https://doi.org/10.1080/03630260601057153

    Article  CAS  PubMed  Google Scholar 

  46. Webb DK, Dunn DT, Serjeant GR (1989) Gall stones in Jamaican children with homozygous sickle cell disease. Arch Dis Child 64:1342. https://doi.org/10.1136/adc.64.9.1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Steinberg MH, Hsu H, Nagel RL, Milner PF, Adams JG, Benjamin L, Fryd S, Gillette P, Gilman J, Josifovska O, Hellman-Erlingsson S, Safaya S, Huey L, Rieder RF (1995) Gender and haplotype effects upon hematological manifestations of adult sickle cell anemia. Am J Hematol 48:175–181. https://doi.org/10.1002/ajh.2830480307

    Article  CAS  PubMed  Google Scholar 

  48. Bernaudin F, Arnaud C, Kamdem A, Hau I, Lelong F, Epaud R, Pondarré C, Pissard S (2018) Biological impact of α genes, β haplotypes, and G6PD activity in sickle cell anemia at baseline and with hydroxyurea. Blood Adv 2:626–637. https://doi.org/10.1182/bloodadvances.2017014555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Leonardo FC, Brugnerotto AF, Domingos IF, Fertrin KY, de Albuquerque DM, Bezerra MAC, Araújo AS, Saad STO, Costa FF, Menzel S, Conran N, Thein SL (2016) Reduced rate of sickle-related complications in Brazilian patients carrying HbF-promoting alleles at the BCL11A and HMIP-2 loci. Br J Haematol 173:456–460. https://doi.org/10.1111/bjh.13961

    Article  CAS  PubMed  Google Scholar 

  50. Lettre G, Sankaran VG, Bezerra MC et al (2008) Globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. Pnas 105:1–6. https://doi.org/10.1073/pnas.0804799105

    Article  Google Scholar 

  51. Ronzoni L, Sonzogni L, Fossati G, Modena D, Trombetta E, Porretti L, Cappellini MD (2014) Modulation of gamma globin genes expression by histone deacetylase inhibitors: an in vitro study. Br J Haematol 165:714–721. https://doi.org/10.1111/bjh.12814

    Article  CAS  PubMed  Google Scholar 

  52. Sankaran VG, Orkin SH (2013) The switch from fetal to adult hemoglobin. Cold Spring Harb Perspect Med. 3. https://doi.org/10.1101/cshperspect.a011643

  53. Rumaney MB, Ngo Bitoungui VJ, Vorster AA, Ramesar R, Kengne AP, Ngogang J, Wonkam A (2014) The co-inheritance of alpha-thalassemia and sickle cell anemia is associated with better hematological indices and lower consultations rate in Cameroonian patients and could improve their survival. PLoS One 9:1–10. https://doi.org/10.1371/journal.pone.0100516

    Article  CAS  Google Scholar 

  54. Chaar V, Kéclard L, Etienne-Julan M, Diara JP, Elion J, Krishnamoorthy R, Romana M (2006) UGT1A1 Polymorphism outweighs the modest effect of deletional (–3.7 Kb) a-thalassemia on cholelithogenesis in sickle cell anemia. Am J Hematol 81:377–379. https://doi.org/10.1002/ajh

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge all patients and their parents for their collaboration in this study.

Funding

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, #483714/2013–5).

Author information

Authors and Affiliations

Authors

Contributions

J.V.G.F.B. performed experiments, updated the clinical data, performed statistical analyses, analyzed and interpreted data, and drafted the manuscript. G.S.A. performed experiments, updated the clinical data, analyzed and interpreted data, and drafted the manuscript. T.H.C.B., M.J.S., R.M.S., I.F.D., B.L.H., D.A.F, D.A.P-M., J.M.O., A.S.A., L.P.M.L., F.S.M., F.P.A., D.M.A, and M.N.S. updated the clinical data, performed experiments, and reviewed the manuscript. M.F.H, A.C.A., F.F.C., and A.S.A recruited patients, assured the access to patients' samples, and updated the clinical data. A.R.L-A. and M.A.B. conceived and designed the study and reviewed the manuscript. M.A.B. gave the final approval of the version to be submitted. The manuscript was reviewed and approved by all authors.

Corresponding author

Correspondence to Marcos A. Bezerra.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval and informed consent

The local research ethics board approved this study (#0035/10) and, in accordance with the Declaration of Helsinki, informed consent was obtained from all participants before study commencement. For those under the age of 18 years, informed consent was obtained from their parents or legal guardian.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batista, J.V.G.F., Arcanjo, G.S., Batista, T.H.C. et al. Influence of UGT1A1 promoter polymorphism, α-thalassemia and βs haplotype in bilirubin levels and cholelithiasis in a large sickle cell anemia cohort. Ann Hematol 100, 903–911 (2021). https://doi.org/10.1007/s00277-021-04422-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-021-04422-1

Keywords

Navigation