Skip to main content

Advertisement

Log in

Hepcidin and other indicators of iron status, by alpha-1 acid glycoprotein levels, in a cohort of Mexican infants

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

The purpose of this study was to describe the changes in iron status indicators at 6 and 12 months of age, controlling by inflammation by measuring alpha-1 acid glycoprotein (AGP). This longitudinal study included 48 healthy-term singleton infants with birth weight ≥ 2500 g, born in hospitals of the Mexican Institute for Social Security. Complete blood count, ferritin, soluble transferrin receptor (sTfR), hepcidin, and AGP were measured in blood at 6 and 12 months of age. sTfR/ferritin ratio and total body iron (TBI) stores were calculated. Hemoglobin and sTfR/ferritin ratio increased with age, while ferritin and TBI decreased. In infants without inflammation, hepcidin, sTfR, and MVC did not show significant changes from 6 to 12 months of age, while ferritin and TBI decreased. In infants with inflammation, hepcidin, TBI, and ferritin levels increased, while hemoglobin and sTfR/ferritin ratio decreased. MVC and sTfR did not change significantly in the presence or absence of inflammation. Hepcidin concentration correlated positively and significantly with ferritin and TBI stores and showed significant negative correlation with sTfR/ferritin ratio. Our study showed that, in absence of inflammation and ID, during the first year of life, physiological changes occur in hemoglobin and ferritin levels as well as in indicators derived from ferritin and sTfR; in contrast, hepcidin and sTfR did not show significant change. However, hepcidin concentration was lower in infants with ID and was higher when inflammation was present, supporting that infants have a functional hepcidin response to changes in iron stores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The dataset generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. WHO (2015) The global prevalence of anaemia in 2011 Geneva. World Health Organization

  2. Gupta PM, Perrine CG, Mei Z, Scanlon KS (2016) Iron, anemia, and iron deficiency anemia among young children in the United States. Nutrients 8(6):330–334. https://doi.org/10.3390/nu8060330

    Article  CAS  PubMed Central  Google Scholar 

  3. IMSS (2000) Informes Institucionales, estadísticas, población derechohabiente 2000. http://www.imss.gob.mx/conoce-al-imss/informes-estadisticas. Accessed [17 Nov 2020]

  4. Duque X, Flores-Hernández S, Flores-Huerta S, Méndez-Ramírez I, Muñoz S, Turnbull B, Martínez-Andrade G, Ramos RI, González-Unzaga M, Mendoza ME, Martínez H (2007) Prevalence of anemia and deficiency of iron, folic acid, and zinc in children younger than 2 years of age who use the health services provided by the Mexican Social Security Institute. BMC Public Health 7(1):345. https://doi.org/10.1186/1471-2458-7-345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shamah-Levy T, Vielma-Orozco E, Heredia-Hernández O, Romero-Martínez M, Mojica-Cuevas J, Cuevas-Nasu L, Santaella-Castell JA, Rivera-Domarco J (2020) Encuesta Nacional de Salud y Nutrición 2018–19: Resultados Nacionales. Instituto Nacional de Salud Pública, Cuernavaca, Morelos

  6. WHO (2020) Global anaemia reduction efforts among women of reproductive age: impact, achievement of targets and the way forward for optimizing efforts. Geneva: World Health Organization. Licence: CC BY-NCSA 3.0 IGO

  7. Suominen P, Punnonen K, Rajamäki A, Irjala K (1998) Serum transferrin receptor and transferrin receptor-ferritin index identify healthy subjects with subclinical iron deficits. Blood 92(8):2934–2939. https://doi.org/10.1182/blood.V92.8.2934

    Article  CAS  PubMed  Google Scholar 

  8. Cazzola M, Beguin Y (1992) New Tools for Clinical evaluation of erythron function in man. Brit J Haemat 80(3):278–284. https://doi.org/10.1111/j.1365-2141.1992.tb08133.x

    Article  CAS  PubMed  Google Scholar 

  9. Cook JD (2005) Diagnosis and management of iron-deficiency anaemia. Best Pract Res Clin Haematol 18(2):319–332. https://doi.org/10.1016/j..beha.2004.08.022

    Article  CAS  PubMed  Google Scholar 

  10. Malope BI, MacPhail AP, Alberts M, Hiss DC (2001) The ratio of serum transferrin receptor and serum ferritin in the diagnosis of iron status. Br J Haematol 115(1):84–89. https://doi.org/10.1046/j.1365-2141.2001.03063.x

    Article  CAS  PubMed  Google Scholar 

  11. Pfeiffer CM, Looker AC (2017) Laboratory methodologies for indicators or iron status: strengths, limitations, and analytical challenges. Am J Clin Nutr 106(suppl 6):1066S–1614S. https://doi.org/10.3945/ajcn.117155887

    Article  Google Scholar 

  12. Cook JD, Flowers CH, Skikne BS (2003) The quantitative assessment of body iron. Blood 101(9):3359–3364. https://doi.org/10.1182/blood-2002-10-3071

    Article  CAS  PubMed  Google Scholar 

  13. WHO (2007) Centers for disease control and prevention. Assessing the iron status of populations. WHO Press Geneva, Switzerland

    Google Scholar 

  14. Raiten DJ, Ashour FAS, Ross AC, Meydani SN, Dawson HD, Stephensen CB, Brabin BJ, Suchdev PS, Ommen BV, Group IC (2015) Inflammation and Nutritional Science for Programs/Policies and Interpretation of Research Evidence (INSPIRE). J Nutr 145(5):1039S–1108S. https://doi.org/10.3945/jn.114.194571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Suchdev PS, Namaste SM, Aaron GJ, Raiten DJ, Brown KH, Flores-Ayala R, Group BotBW (2016) Overview of the Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project. Adv Nutr 7(2):349–356. https://doi.org/10.3945/an.115.010215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wieringa FT, Dijkhuizen MA, West CE, Northrop-Clewes CA, Muhilal (2002) Estimation of the effect of the acute phase response on indicators of micronutrient status in Indonesian infants. J Nutr 132(10):3061–3066. https://doi.org/10.1093/jn/131.10.3061

    Article  CAS  PubMed  Google Scholar 

  17. Aranda N, Bedmar C, Arija V, Jardi C, Jimenez-Feijoo R, Ferré N, Tous M (2018) Serum hepcidin levels, iron status and HFE gene alterations during the first year of life in healthy Spanish infants. Ann Hematol 97(6):1071–1080. https://doi.org/10.1007/s00277-018-3256-2

    Article  CAS  PubMed  Google Scholar 

  18. Ćulafić J, Kolarović J, Pezo L, Čabarkapa V, Nikolić S, Stojadinović A, Solarov MB (2018) Serum concentration of hepcidin as an indicator of iron reserves in children. J Med Biochem 37(4):456–464. https://doi.org/10.2478/jomb-2018-0003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Uijterschout L, Swinkels DW, Domellöf M, Lagerqvist C, Huding C, Tjalsma H, Vos R, Goudoever JB, Brus F (2014) Serum hepcidin measured by immunochemical and mass-spectrometric methods and their correlation with iron status indicators in healthy children aged 0.5–3 y. Pediatr Res 76(4):409–414. https://doi.org/10.1038/pr.2014.109

    Article  CAS  PubMed  Google Scholar 

  20. Prentice AM, Doherty CP, Abrams SA, Cox SE, Atkinson SH, Verhoef H, Armitage AE, Drakesmith H (2012) Hepcidin is the major predictor of erythrocyte iron incorporation in anemic African children. Blood 119(8):1922–1928. https://doi.org/10.1182/blood-2011-11-391219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Prentice AM, Bah A, Jallow MW, Jallow AT, Sanyang S, Sise EA, Ceesay K, Danso E, Armitage AE, Pasricha S-R, Drakesmith H, Wathuo M, Kessler N, Cerami C, Wegmüller R (2019) Respiratory infections drive hepcidin-mediated blockade of iron absorption leading to iron deficiency anemia in African children. Sci Adv 5(3):eaav9020. https://doi.org/10.1126/sciadv.aav9020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aggett PJ, Agostini C, Axelsson I, Bresson J-L, Goulet O, Hernell O, Koletzko B, Lafeber HL, Michaelsen KF, Micheli J-L, Rigo J, Szajewska H, Weaver LT (2002) Iron metabolism and requirements in early childhood: do we know enough?: a commentary by the ESPGHAN Committee on Nutrition. J Pediatr Gastroenterol Nutr 34(4):337–345. https://doi.org/10.1097/00005176-200204000-00003

    Article  CAS  PubMed  Google Scholar 

  23. Jonker FA, Boele van Hensbroek M (2014) Anaemia, iron deficiency and susceptibility to infections. J Inf Secur 69(Suppl 1):S23–S27. https://doi.org/10.1111/bjh.14593

    Article  Google Scholar 

  24. Martinez H, Duque X, Flores S, Ramos RI, Martinez G, Unzaga MA (2008) Effects of a comprehensive intervention to prevent iron deficiency during the first year of life. FASEB J 22(S1):895.895–895.895. https://doi.org/10.1096/fasebj.22.1_supplement.895.5

    Article  Google Scholar 

  25. WHO (2006) Multicentre Growth Reference Study Group. WHO Child Growth Standards: length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age: methods and development. Geneva: World Health Organization.312 pages

  26. Ruel MT, Menon P (2002) Child feeding practices are associated with child nutritional status in Latin America: innovative uses of the demographic and health surveys. J Nutr 132(6):1180–1187. https://doi.org/10.1093/jn/132.6.1180

    Article  CAS  PubMed  Google Scholar 

  27. WHO (2008) Indicators for assessing infant and young child feeding practices: Part 1: definitions: conclusions of a consensus meeting held 6–8 November 2007 in Washington DC, USA

  28. Northrop-Clewes CA (2008) Interpreting indicators of iron status during an acute phase response – lessons from malaria and human immunodeficiency virus. Ann Clin Biochem 45(Pt 1):18–32. https://doi.org/10.1258/acb.2007.007167

    Article  CAS  PubMed  Google Scholar 

  29. Bachem Americas I, EUA. https://www.bachem.com/. Accessed [Marzo 2019]

  30. Pérez Acosta A (2019) Puntos de corte en la concentración de ferritina para detectar bajas reservas corporales de hierro, en niños mexicanos durante el primer año de vida. Universidad Nacional Autonoma de Mexico, CDMX

  31. Larsson SM, Hillarp A, Hellström-Westas L, Domellöf M, Lundahl T, Andersson O (2019) When age really matters; ferritin reference intervals during infancy revisited. Scand J Clin Lab Invest 79(8):590–594. https://doi.org/10.1080/00365513.2019.1681028

    Article  PubMed  Google Scholar 

  32. Hinchliffe RF, Bellamy GJ, Bell F, Finn A, Vora AJ, Lennard L (2013) Reference intervals for red cell variables and platelet counts in infants at 2, 5 and 13 months of age: a cohort study. J Clin Pathol 66(11):962–966. https://doi.org/10.1136/jclinpath-2013-201742

    Article  CAS  PubMed  Google Scholar 

  33. Suárez-López L, Campero L, De la Vara-Salazar E, Rivera-Rivera L, Hernández-Serrato MI, Walker D, Lazcano-Ponce E (2013) Sociodemographic and reproductive characteristics associated with the increase of cesarean section practice in Mexico. Salud Publica Mex 55(2):S225–S234

    Article  Google Scholar 

  34. Uribe-Leitz T, Barrero-Castillero A, Cervantes-Trejo A, Santos JM, de la Rosa-Rabago A, Lipsitz SR, Basavilvazo-Rodriguez MA, Shah N, Molina RL (2019) Trends of caesarean delivery from 2008 to 2017, Mexico. Bull World Health Organ 97(7):502–512. https://doi.org/10.2471/blt.18.224303

    Article  PubMed  PubMed Central  Google Scholar 

  35. Guendelman S, Gemmill A, Thornton D, Walker D, Harvey M, Walsh J, Perez-Cuevas R (2017) Prevalence, disparities, and determinants of primary cesarean births among first-time mothers in Mexico. Health Aff 36(4):714–722. https://doi.org/10.1377/hlthaff.2016.1084

    Article  Google Scholar 

  36. Dube K, Kersting M, Kalhoff H (2010) Iron status in infants and relation to dietary intake: Part 1: General and developmental aspects. Curr Nutr Food Sci 6(4):256–261. https://doi.org/10.2174/157340110793663716

    Article  CAS  Google Scholar 

  37. Dewey KG, Chaparro CM (2007) Session 4: mineral metabolism and body composition iron status of breast-fed infants - symposium on ‘nutrition in early life: new horizons in a new century’. Proc Nutr Soc 66(3):412–422. https://doi.org/10.1017/S002966510700568X

    Article  CAS  PubMed  Google Scholar 

  38. Jansen V (2019) Diagnosis of anemia-a synoptic overview and practical approach. Transfus Apher Sci 58(4):375–385. https://doi.org/10.1016/j.transci.2019.06.012

    Article  PubMed  Google Scholar 

  39. Henningar SR, McClung JP (2016) Nutritional immunity: starving pathogens of trace minerals. Am J Lifestyle Med 10(3):170–173. https://doi.org/10.1177/1559827616629117

    Article  Google Scholar 

  40. Petry N, Olofin I, Hurrell RF, Boy E, Wirth JP, Moursi M, Angel MD, Rohner F (2016) The proportion of anemia associated with iron deficiency in low, medium, and high human development index countries: a systematic analysis of national surveys. Nutrients 8(11):693–710. https://doi.org/10.3390/nu8110693

    Article  CAS  PubMed Central  Google Scholar 

  41. Punnonen K, Irjala K, Rajamäki A (1997) Serum transferrin receptor and its ratio to serum ferritin in the diagnosis of iron deficiency. Blood 89(3):1052–1057. https://doi.org/10.1182/blood.V89.3.1052

    Article  CAS  PubMed  Google Scholar 

  42. Collard KJ (2009) Iron homeostasis in the neonate. Pediatrics 123(4):1208–1216. https://doi.org/10.1542/peds.2008-1047

    Article  PubMed  Google Scholar 

  43. Berglund S, Lönnerdal B, Westrup B, Domellöf M (2011) Effects of iron supplementation on serum hepcidin and serum erythropoietin in low-birth-weight infants. Am J Clin Nutr 94(6):1553–1561. https://doi.org/10.3945/ajcn.111.013938

    Article  CAS  PubMed  Google Scholar 

  44. Ganz T (2003) Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood 102(3):783–788. https://doi.org/10.1182/blood-2003-03-0672

    Article  CAS  PubMed  Google Scholar 

  45. Drakesmith H ( 2016) Next-generation biomarkers for iron status In: Vevey & Karger (ed) Next-generation nutritional biomarkers to guide better health care: Nestlé Nutrition Institute Workshop Series vol 84. Basel, Switzerland pp 59–69. https://doi.org/10.1159/000436955

  46. Mupfudze TG, Stoltzfus RJ, Rukobo S, Moulton LH, Humphrey JH, Prendergast AJ (2013) Hepcidin decreases over the first year of life in healthy African infants. Brit J Haemat 164(1):150–153. https://doi.org/10.1111/bjh.12567

    Article  PubMed  Google Scholar 

  47. Bhatia P, Marathe R, Hegde A, Bhardwaj D, Jain R (2017) Plasma hepcidin levels in healthy children from Chandigarh, Northern India. Indian Pediatr 54:599–600. https://doi.org/10.1007/s13312-017-1078-2

    Article  PubMed  Google Scholar 

  48. Choi HS, Song SH, Lee JH, Kim HJ, Yang HR (2012) Serum hepcidin levels and iron parameters in children with iron deficiency. Korean J Hematol 4(47):286–292. https://doi.org/10.5045/kjh.2012.47.4.286

    Article  CAS  Google Scholar 

  49. Jaeggi T, Moretti D, Kualsvig J (2013) Iron status and systemic inflammation but not gut inflammation, strongly predict gender-specific concentrations of serum hepcidin in infants in rural Kenya. PLoS One 8(2):e57513. https://doi.org/10.1371/journal.pone.0057513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Radboud University Nijmegen Medical Centre (2012) Hepcidin reference values WCX-TOF MS/ reference values for serum Hepcidin-25 in children aged 6 months to 3 years. http://hepcidinanalysis.com/. Accessed [Marzo 2019]

Download references

Funding

This study was supported by the National Council for Science and Technology–CONACyT, Mexico (Grant Number: SALUD-2014-C01-233164).

Author information

Authors and Affiliations

Authors

Contributions

Eugenia Mendoza participated in study design, performed laboratory analyses, participated in the interpretation of results, and drafted the manuscript. Ximena Duque participated in study design, performed the statistical analyses, participated in the interpretation of results, and drafted the manuscript. Elba Reyes revised the manuscript for important intellectual content and participated in the interpretation of results. Gloria Martinez revised the manuscript for important intellectual content and participated in the interpretation of results. Segundo Moran participated in the interpretation of results and revised the manuscript for important intellectual content. Samuel Flores participated in study design, participated in the interpretation of results, and revised the manuscript for important intellectual content. Homero Martinez participated in study design, participated in the interpretation of results, and critically revised the manuscript for important intellectual content. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ximena Duque.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by the Ethical Review Board of Mexican Institute for Social Security.

Informed consent

Informed consent was obtained from all parents or tutors of infants included in the study, according to the Helsinki declaration.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendoza, E., Duque, X., Moran, S. et al. Hepcidin and other indicators of iron status, by alpha-1 acid glycoprotein levels, in a cohort of Mexican infants. Ann Hematol 100, 879–890 (2021). https://doi.org/10.1007/s00277-021-04402-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-021-04402-5

Keywords

Navigation