Skip to main content

Advertisement

Log in

Frequent occurrence of hypophosphatemia among multiple myeloma patients treated with elotuzumab: a single clinic retrospective study

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

The purpose of this single-center retrospective study was to determine the incidence of decreased blood phosphorus levels and hypophosphatemia among multiple myeloma (MM) patients treated with elotuzumab. Hypophosphatemia, which is defined as a serum phosphorus concentration < 2.5 mg/dL, leads to complications ranging from muscle weakness and disorientation to seizures and heart failure. A total of 23 MM patients receiving care in a clinic specializing in treatment of MM from July 2018 to March 2020 and treated with an elotuzumab-containing therapy were evaluated, and 9 were investigated for this study. Elotuzumab was given at 10 mg/kg weekly for the first two treatment cycles (28 days/cycle), followed by 10 mg/kg every other week for all subsequent cycles. Four different elotuzumab combination therapies were administered: 1) elotuzumab and dexamethasone 2) elotuzumab, lenalidomide and dexamethasone 3) elotuzumab, pomalidomide and dexamethasone and 4) elotuzumab, carfilzomib, pomalidomide, and dexamethasone. Phosphorous levels were determined at a median of every 13 days at intervals ranging from once weekly to once monthly until a phosphate supplement was prescribed to the patient or when elotuzumab treatment was discontinued. We found that regardless of elotuzumab combination therapy, all patients treated showed decreased phosphorus levels after initiating elotuzumab treatment with reductions ranging from 12.5% to 44.1% below baseline. Six participants (67%) demonstrated an average serum phosphorus at or below 2.5 mg/dL after starting elotuzumab therapy. This retrospective study suggests that hypophosphatemia commonly occurs among MM patients receiving elotuzumab-containing therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Harousseau J-L, Dreyling M (2010) Multiple myeloma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 21:v155–v157. https://doi.org/10.1093/annonc/mdq178

    Article  PubMed  Google Scholar 

  2. Ritchie D, Colonna M (2017) Mechanisms of Action and Clinical Development of Elotuzumab. Clinical and Translational Science 11:261–266. https://doi.org/10.1111/cts.12532

    Article  PubMed  PubMed Central  Google Scholar 

  3. Campbell KS, Cohen AD, Pazina T (2018) Mechanisms of NK Cell Activation and Clinical Activity of the Therapeutic SLAMF7 Antibody, Elotuzumab in Multiple Myeloma. Frontiers in Immunology. https://doi.org/10.3389/fimmu.2018.02551

  4. Lonial S, Dimopoulos M, Palumbo A et al (2015) Elotuzumab Therapy for Relapsed or Refractory Multiple Myeloma. N Engl J Med 373:621–631. https://doi.org/10.1056/nejmoa1505654

    Article  CAS  PubMed  Google Scholar 

  5. Bristol-Myers Squibb Company. Empliciti (elotuzumab) [package insert]. U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/761035s008lbl.pdf. Revised November 2018. Accessed April 16, 2020.

  6. Berenson J, Martinez D, Spektor T, et al (2019) A Phase 2 Trial of the Efficacy and Safety of Elotuzumab in Combination with Pomalidomide, Carfilzomib and Dexamethasone for High Risk Relapsed/ Refractory Multiple Myeloma Patients. Clinical Lymphoma Myeloma and Leukemia. https://doi.org/10.1016/j.clml.2019.09.413

  7. Gross Z, Rahbari A, Wirtschafter E et al (2018) Elotuzumab and dexamethasone for relapsed or refractory multiple myeloma patients: A retrospective study. Eur J Haematol 100:621–623. https://doi.org/10.1111/ejh.13058

    Article  CAS  PubMed  Google Scholar 

  8. Laubach J, Nooka AK, Cole C et al (2017) An open-label, single arm, phase IIa study of bortezomib, lenalidomide, dexamethasone, and elotuzumab in newly diagnosed multiple myeloma. J Clin Oncol 35:8002–8002. https://doi.org/10.1200/jco.2017.35.15_suppl.8002

    Article  Google Scholar 

  9. Yee AJ, Laubach JP, Campagnaro EL et al (2019) A Phase II Study of Elotuzumab in Combination with Pomalidomide, Bortezomib, and Dexamethasone in Relapsed and Refractory Multiple Myeloma. Blood 134:3169–3169. https://doi.org/10.1182/blood-2019-124870

    Article  Google Scholar 

  10. Knochel JP (1981) Hypophosphatemia. West J Med 134(1):15–26

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bouvard B, Royer M, Chappard D et al (2010) Monoclonal gammopathy of undetermined significance, multiple myeloma, and osteoporosis. Joint Bone Spine 77:120–124. https://doi.org/10.1016/j.jbspin.2009.12.002

    Article  CAS  PubMed  Google Scholar 

  12. Gaasbeek A, Meinders AE (2005) Hypophosphatemia: An update on its etiology and treatment. The American Journal of Medicine 118:1094–1101. https://doi.org/10.1016/j.amjmed.2005.02.014

    Article  CAS  PubMed  Google Scholar 

  13. Subramanian R, Khardori R (2000) Severe Hypophosphatemia: Pathophysiologic Implications, Clinical Presentations, and Treatment. Medicine 79:1–8. https://doi.org/10.1097/00005792-200001000-00001

    Article  CAS  PubMed  Google Scholar 

  14. Umeda M, Okuda S, Izumi H et al (2006) Prognostic significance of the serum phosphorus level and its relationship with other prognostic factors in multiple myeloma. Ann Hematol 85:469–473. https://doi.org/10.1007/s00277-006-0095-3

    Article  CAS  PubMed  Google Scholar 

  15. Dispenzieri A, Kyle RA (2005) Multiple myeloma: clinical features and indications for therapy. Best Practice & Research Clinical Haematology 18:553–568. https://doi.org/10.1016/j.beha.2005.01.008

    Article  CAS  Google Scholar 

  16. Celgene Corporation. Revlimid (lenalidomide) [package insert]. U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/021880s028lbl.pdf . Accessed 16 April 2020

  17. Amgen Inc. Kyprolis (carfilzomib) [package insert]. U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/202714s025lbl.pdf . Revised February 2019. Accessed 16 April 2020

  18. Usmani SZ, Hansen E, Steward D et al (2012) Phase II Study of Pomalidomide (Pom) in Genomically Defined High Risk Relapsed and Refractory Multiple Myeloma (RRMM). Blood 120:4083–4083. https://doi.org/10.1182/blood.v120.21.4083.4083

    Article  Google Scholar 

  19. Liamis G, Milionis HJ, Elisaf M (2010) Medication-induced hypophosphatemia: a review Qjm 103:449–459. https://doi.org/10.1093/qjmed/hcq039

    Article  CAS  PubMed  Google Scholar 

  20. Lacy MQ, Dispenzieri A, Gertz MA et al (2006) Mayo Clinic Consensus Statement for the Use of Bisphosphonates in Multiple Myeloma. Mayo Clin Proc 81:1047–1053. https://doi.org/10.4065/81.8.1047

    Article  CAS  PubMed  Google Scholar 

  21. Lipton A, Fizazi K, Stopeck AT et al (2012) (2012) Superiority of denosumab to zoledronic acid for prevention of skeletal-related events: a combined analysis of 3 pivotal, randomised, phase 3 trials. Eur J Cancer 48(16):3082–3092. https://doi.org/10.1016/j.ejca.2012.08.002

    Article  CAS  PubMed  Google Scholar 

  22. Birgegard G (2008) Managing anemia in lymphoma and multiple myeloma. Ther Clin Risk Manag 4:527–539. https://doi.org/10.2147/tcrm.s1351

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zoller H, Schaefer B, Glodny B (2017) Iron-induced hypophosphatemia. Curr Opin Nephrol Hypertens 26:266–275. https://doi.org/10.1097/mnh.0000000000000329

    Article  CAS  PubMed  Google Scholar 

  24. Wolf M, Koch TA, Bregman DB (2013) Effects of iron deficiency anemia and its treatment on fibroblast growth factor 23 and phosphate homeostasis in women. J Bone Miner Res 28:1793–1803. https://doi.org/10.1002/jbmr.1923

    Article  CAS  PubMed  Google Scholar 

  25. Baxter Healthcare Corporation. IFEX (ifosfamide) [package insert]. U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/019763s017lbl.pdf. Revised March 2012. Accessed 27 April 2020

  26. Celgene Corporation. VIDAZA (azacytidine for injection). U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2008/050794s011lbl.pdf. Revised August 2008. Accessed 27 April 2020

  27. Schmidt L (2002) Serum phosphate is an early predictor of outcome in severe acetaminophen-induced hepatotoxicity. Hepatology 36:659–665. https://doi.org/10.1053/jhep.2002.35069

    Article  CAS  PubMed  Google Scholar 

  28. Ramakrishna KN, Shah A, Martinez-Balzano CD (2019) Massively elevated creatine kinase levels in antihistamine-induced rhabdomyolysis. Baylor University Medical Center Proceedings 33:44–46. https://doi.org/10.1080/08998280.2019.1688624

    Article  PubMed  Google Scholar 

  29. Haas CE, Magram Y, Mishra A (2003) Rhabdomyolysis and Acute Renal Failure following an Ethanol and Diphenhydramine Overdose. Ann Pharmacother 37:538–542. https://doi.org/10.1345/aph.1c241

    Article  PubMed  Google Scholar 

  30. Matsunaga C, Izumi S, Furukubo T et al (2007) Effect of famotidine and lansoprazole on serum phosphorus levels in hemodialysis patients on calcium carbonate therapy. Clin Nephrol 68:93–98. https://doi.org/10.5414/cnp68093

    Article  CAS  PubMed  Google Scholar 

  31. Schiodt F, Peter O, Christensen E et al (2002) The value of plasma acetaminophen half-life in antidote-treated acetaminophen overdosage. Clin Pharmacol Ther 71(4):221–225. https://doi.org/10.1067/mcp.2002.121857

    Article  CAS  PubMed  Google Scholar 

  32. Blyden GT, Greenblatt DJ, Scavone JM, Shader RI (1986) Pharmacokinetics of Diphenhydramine and a Demethylated Metabolite Following Intravenous And Oral Administration. The Journal of Clinical Pharmacology 26(7):529–533. https://doi.org/10.1002/j.1552-4604.1986.tb02946.x

    Article  CAS  PubMed  Google Scholar 

  33. Smith L (1985) Clinical Pharmacology of Famotidine. Digestion 32(1):15–23. https://doi.org/10.1159/000199257

    Article  PubMed  Google Scholar 

  34. Andrade L, Rebouças NA, Seguro AC (2004) Down-regulation of Na transporters and AQP2 is responsible for acyclovir-induced polyuria and hypophosphatemia. Kidney Int 65:175–183. https://doi.org/10.1111/j.1523-1755.2004.00359.x

    Article  CAS  PubMed  Google Scholar 

  35. Balasa B, Yun R, Belmar NA et al (2014) Elotuzumab enhances natural killer cell activation and myeloma cell killing through interleukin-2 and TNF-α pathways. Cancer Immunol Immunother 64:61–73. https://doi.org/10.1007/s00262-014-1610-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Quan W, Ramirez M, Taylor C et al (2005) Administration of High-Dose Continuous Infusion Interleukin-2 to Patients Age 70 or Over. Cancer Biotherapy and Radiopharmaceuticals 20:11–15. https://doi.org/10.1089/cbr.2005.20.11

    Article  CAS  PubMed  Google Scholar 

  37. Kozeny GA, Nicolas JD, Creekmore S et al (1988) Effects of interleukin-2 immunotherapy on renal function. J Clin Oncol 6:1170–1176. https://doi.org/10.1200/jco.1988.6.7.1170

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

JRB designs the study. RS, BE, BR, MES collected data. BR and TMS analyzed the data. BR, JRB and TMS wrote manuscript. FT provided critical review and edits to manuscript.

Corresponding author

Correspondence to James R. Berenson.

Ethics declarations

Conflicts of interest/Competing interests

None to report.

Ethics approval

This study was approved by the institutional review board and all procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation and with the Helsinki Declaration of 1975, as revised in 2008. All patients provided written informed consent. The study was conducted in accordance with the principles of the Declaration of Helsinki 1964 and its later amendments, and International Conference on Harmonization Good Clinical Practice guidelines.

Consent to participate

All patients provided written informed consent.

Consent for publication

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Regidor, B., Swift, R., Eades, B. et al. Frequent occurrence of hypophosphatemia among multiple myeloma patients treated with elotuzumab: a single clinic retrospective study. Ann Hematol 100, 1079–1085 (2021). https://doi.org/10.1007/s00277-020-04351-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-020-04351-5

Keywords

Navigation