Piel FB, Steinberg MH, Rees DC (2017) Sickle cell disease. N Engl J Med 376:1561–1573. https://doi.org/10.1056/NEJMra1510865
CAS
Article
PubMed
Google Scholar
Habara A, Steinberg MH (2016) Minireview: genetic basis of heterogeneity and severity in sickle cell disease. Exp Biol Med (Maywood) 241:689–696. https://doi.org/10.1177/1535370216636726
CAS
Article
Google Scholar
Kato GJ, Gladwin MT, Steinberg MH (2007) Deconstructing sickle cell disease: reappraisal of the role of hemolysis in the development of clinical subphenotypes. Blood Rev 21:37–47. https://doi.org/10.1016/j.blre.2006.07.001
Article
PubMed
Google Scholar
Lettre G, Sankaran VG, Bezerra MAC, Araújo AS, Uda M, Sanna S, Cao A, Schlessinger D, Costa FF, Hirschhorn JN, Orkin SH (2008) DNA polymorphisms at the BCL11A, HBS1L-MYB, and -globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. Proc Natl Acad Sci 105:11869–11874. https://doi.org/10.1073/pnas.0804799105
Article
PubMed
Google Scholar
Bae HT, Baldwin CT, Sebastiani P, Telen MJ, Ashley-Koch A, Garrett M, Hooper WC, Bean CJ, Debaun MR, Arking DE, Bhatnagar P, Casella JF, Keefer JR, Barron-Casella E, Gordeuk V, Kato GJ, Minniti C, Taylor J, Campbell A, Luchtman-Jones L, Hoppe C, Gladwin MT, Zhang Y, Steinberg MH (2012) Meta-analysis of 2040 sickle cell anemia patients: BCL11A and HBS1L-MYB are the major modifiers of HbF in African Americans. Blood 120:1961–1962. https://doi.org/10.1182/blood-2012-06-432849
CAS
Article
PubMed
PubMed Central
Google Scholar
Steinberg MH, Sebastiani P (2012) Genetic modifiers of sickle cell disease. Am J Hematol 87:795–803. https://doi.org/10.1002/ajh.23232
CAS
Article
PubMed
PubMed Central
Google Scholar
Smith WR, Coyne P, Smith VS, Mercier B (2003) Temperature changes, temperature extremes, and their relationship to emergency department visits and hospitalizations for sickle cell crisis. Pain Manag Nurs 4:106–111. https://doi.org/10.1016/s1524-9042(02)54211-9
Article
PubMed
Google Scholar
Rogovik AL, Persaud J, Friedman JN, Kirby MA, Goldman RD (2011) Pediatric vasoocclusive crisis and weather conditions. J Emerg Med 41:559–565. https://doi.org/10.1016/j.jemermed.2010.05.006
Article
PubMed
Google Scholar
Carvalho MOS, Araujo-Santos T, Reis JHO, Rocha LC, Cerqueira BAV, Luz NF, Lyra IM, Lopes VM, Barbosa CG, Fiuza LM, Santiago RP, Figueiredo CVB, da Guarda CC, Barral Neto M, Borges VM, Gonçalves MS (2018) Inflammatory mediators in sickle cell anaemia highlight the difference between steady state and crisis in paediatric patients. Br J Haematol 182:933–936. https://doi.org/10.1111/bjh.14896
Article
PubMed
Google Scholar
Zhang D, Xu C, Manwani D, Frenette PS (2016) Neutrophils, platelets, and inflammatory pathways at the nexus of sickle cell disease pathophysiology. Blood 127:801–809. https://doi.org/10.1182/blood-2015-09-618538
CAS
Article
PubMed
PubMed Central
Google Scholar
Rees DC, Williams TN, Gladwin MT (2010) Sickle-cell disease. Lancet 376:2018–2031. https://doi.org/10.1016/S0140-6736(10)61029-X
CAS
Article
PubMed
Google Scholar
Bandeira ICJ, Rocha LBS, Barbosa MC, Elias DB, Querioz JA, Freitas MV, Gonçalves RP (2014) Chronic inflammatory state in sickle cell anemia patients is associated with HBB*S haplotype. Cytokine 65:217–221. https://doi.org/10.1016/j.cyto.2013.10.009
CAS
Article
PubMed
Google Scholar
Manwani D, Frenette PS (2013) Vaso-occlusion in sickle cell disease: pathophysiology and novel targeted therapies. Blood 122:3892–3898. https://doi.org/10.1182/blood-2013-05-498311
CAS
Article
PubMed
PubMed Central
Google Scholar
Pathare A, Al Kindi S, Alnaqdy AA et al (2004) Cytokine profile of sickle cell disease in Oman. Am J Hematol 77:323–328. https://doi.org/10.1002/ajh.20196
CAS
Article
PubMed
Google Scholar
Alagbe AE, Justo Junior AS, Ruas LP et al (2018) Interleukin-27 and interleukin-37 are elevated in sickle cell anemia patients and inhibit in vitro secretion of interleukin-8 in neutrophils and monocytes. Cytokine 107:85–92. https://doi.org/10.1016/j.cyto.2017.12.001
CAS
Article
PubMed
Google Scholar
Conran N, Franco-Penteado CF, Costa FF (2009) Newer aspects of the pathophysiology of sickle cell disease vaso-occlusion. Hemoglobin 33:1–16. https://doi.org/10.1080/03630260802625709
CAS
Article
PubMed
Google Scholar
Chiang EY, Frenette PS (2005) Sickle cell vaso-occlusion. Hematol Oncol Clin North Am 19:771–784. https://doi.org/10.1016/j.hoc.2005.08.002
Article
PubMed
Google Scholar
Lanaro C, Franco-Penteado CF, Albuqueque DM et al (2009) Altered levels of cytokines and inflammatory mediators in plasma and leukocytes of sickle cell anemia patients and effects of hydroxyurea therapy. J Leukoc Biol 85:235–242. https://doi.org/10.1189/jlb.0708445
CAS
Article
PubMed
Google Scholar
Wun T (2001) The role of inflammation and leukocytes in the pathogenesis of sickle cell disease; haemoglobinopathy. Hematology 5:403–412. https://doi.org/10.1080/10245332.2000.11746536
CAS
Article
PubMed
Google Scholar
Ware RE, de Montalembert M, Tshilolo L, Abboud MR (2017) Sickle cell disease. Lancet (London, England) 390:311–323. https://doi.org/10.1016/S0140-6736(17)30193-9
Article
Google Scholar
da Silva RR, Pereira MC, Melo Rêgo MJB, Domingues Hatzlhofer BL, da Silva Araújo A, Cavalcanti Bezerra MA, da Rocha Pitta I, da Rocha Pitta MG (2014) Evaluation of Th17 related cytokines associated with clinical and laboratorial parameters in sickle cell anemia patients with leg ulcers. Cytokine 65:143–147. https://doi.org/10.1016/j.cyto.2013.11.012
CAS
Article
PubMed
Google Scholar
Cavalcante JEA, Machado RPG, Laurentino MR et al (2016) Clinical events and their relation to the tumor necrosis factor-alpha and interleukin-10 genotypes in sickle-cell-anemia patients. Hematol Oncol Stem Cell Ther 9:14–19. https://doi.org/10.1016/j.hemonc.2015.11.002
CAS
Article
PubMed
Google Scholar
Mihara M, Hashizume M, Yoshida H et al (2012) IL-6/IL-6 receptor system and its role in physiological and pathological conditions. Clin Sci (Lond) 122:143–159. https://doi.org/10.1042/CS20110340
CAS
Article
Google Scholar
Kang S, Tanaka T, Narazaki M, Kishimoto T (2019) Targeting interleukin-6 signaling in clinic. Immunity 50:1007–1023. https://doi.org/10.1016/j.immuni.2019.03.026
CAS
Article
PubMed
Google Scholar
Pierrot-Gallo BS, Vicari P, Matsuda SS, Adegoke SA, Mecabo G, Figueiredo MS (2015) Haptoglobin gene polymorphisms and interleukin-6 and -8 levels in patients with sickle cell anemia. Rev Bras Hematol Hemoter 37:329–335. https://doi.org/10.1016/j.bjhh.2015.07.006
Article
PubMed
PubMed Central
Google Scholar
Taylor SC, Shacks SJ, Mitchell RA, Banks A (1995) Serum interleukin-6 levels in the steady state of sickle cell disease. J Interf Cytokine Res 15:1061–1064. https://doi.org/10.1089/jir.1995.15.1061
CAS
Article
Google Scholar
Hibbert JM, Hsu LL, Bhathena SJ, Irune I, Sarfo B, Creary MS, Gee BE, Mohamed AI, Buchanan ID, al-Mahmoud A, Stiles JK (2005) Proinflammatory cytokines and the hypermetabolism of children with sickle cell disease. Exp Biol Med (Maywood) 230:68–74. https://doi.org/10.1177/153537020523000109
CAS
Article
Google Scholar
Costa MFH, Torres LC, da Matta MC et al (2019) Interleukin-6 in pregnancy with sickle cell disease. Hematol Transfus Cell Ther. https://doi.org/10.1016/j.htct.2019.02.001
Sarray S, Saleh LR, Lisa Saldanha F, al-Habboubi HH, Mahdi N, Almawi WY (2015) Serum IL-6, IL-10, and TNFα levels in pediatric sickle cell disease patients during vasoocclusive crisis and steady state condition. Cytokine 72:43–47. https://doi.org/10.1016/j.cyto.2014.11.030
CAS
Article
PubMed
Google Scholar
Van Beers EJ, Yang Y, Raghavachari N, Tian X, Allen DT, Nichols JS, Mendelsohn L, Nekhai S, Gordeuk VR, Taylor 6th JG, Kato GJ (2015) Iron, inflammation, and early death in adults with sickle cell disease. Circ Res 116:298–306. https://doi.org/10.1161/CIRCRESAHA.116.304577
Zahran AM, Nafady A, Saad K et al (2020) Effect of hydroxyurea treatment on the inflammatory markers among children with sickle cell disease. Clin Appl Thromb Hemost 26. https://doi.org/10.1177/1076029619895111
Harada A, Sekido N, Akahoshi T et al (1994) Essential involvement of interleukin-8 (IL-8) in acute inflammation. J Leukoc Biol 56:559–564. https://doi.org/10.1002/jlb.56.5.559
CAS
Article
PubMed
Google Scholar
Xie K (2001) Interleukin-8 and human cancer biology. Cytokine Growth Factor Rev 12:375–391. https://doi.org/10.1016/s1359-6101(01)00016-8
Niu X, Nouraie M, Campbell A, Rana S, Minniti CP, Sable C, Darbari D, Dham N, Reading NS, Prchal JT, Kato GJ, Gladwin MT, Castro OL, Gordeuk VR (2009) Angiogenic and inflammatory markers of cardiopulmonary changes in children and adolescents with sickle cell disease. PLoS One 4:e7956. https://doi.org/10.1371/journal.pone.0007956
CAS
Article
PubMed
PubMed Central
Google Scholar
Gonçalves MS, Queiroz IL, Cardoso SA et al (2001) Interleukin 8 as a vaso-occlusive marker in Brazilian patients with sickle cell disease. Brazilian J Med Biol Res = Rev Bras Pesqui medicas e Biol 34:1309–1313. https://doi.org/10.1590/s0100-879x2001001000011
Article
Google Scholar
Alagbe AE, Olaniyi JA, Aworanti OW (2018) Adult sickle cell anaemia patients in bone pain crisis have elevated pro-inflammatory cytokines. Mediterr J Hematol Infect Dis 10:e2018017. https://doi.org/10.4084/MJHID.2018.017
Article
PubMed
PubMed Central
Google Scholar
Adegoke SA, Kuti BP, Omole KO, Smith OS, Oyelami OA, Adeodu OO (2018) Acute chest syndrome in sickle cell anaemia: higher serum levels of interleukin-8 and highly sensitive C-reactive proteins are associated with impaired lung function. Paediatr Int Child Health 38:244–250. https://doi.org/10.1080/20469047.2018.1519988
Article
PubMed
Google Scholar
Abboud MR, Taylor EC, Habib D et al (2008) Elevated serum and bronchoalveolar lavage fluid levels of interleukin 8 and granulocyte colony-stimulating factor associated with the acute chest syndrome in patients with sickle cell disease. Br J Haematol 111:482–490. https://doi.org/10.1111/j.1365-2141.2000.02358.x
Article
Google Scholar
Cajado C, Cerqueira BAV, Couto FD et al (2011) TNF-alpha and IL-8: serum levels and gene polymorphisms (-308G>A and -251A>T) are associated with classical biomarkers and medical history in children with sickle cell anemia. Cytokine 56:312–317. https://doi.org/10.1016/j.cyto.2011.07.002
CAS
Article
PubMed
Google Scholar
Singh K, Agrawal NK, Gupta SK et al (2016) Increased expression of TLR9 associated with pro-inflammatory S100A8 and IL-8 in diabetic wounds could lead to unresolved inflammation in type 2 diabetes mellitus (T2DM) cases with impaired wound healing. J Diabetes Complicat 30:99–108. https://doi.org/10.1016/j.jdiacomp.2015.10.002
Article
PubMed
Google Scholar
Peral MC, Rachid MM, Gobbato NM, Huaman Martinez MA, Valdez JC (2010) Interleukin-8 production by polymorphonuclear leukocytes from patients with chronic infected leg ulcers treated with Lactobacillus plantarum. Clin Microbiol Infect 16:281–286. https://doi.org/10.1111/j.1469-0691.2009.02793.x
CAS
Article
PubMed
Google Scholar
Minniti CP, Delaney K-MH, Gorbach AM et al (2014) Vasculopathy, inflammation, and blood flow in leg ulcers of patients with sickle cell anemia. Am J Hematol 89:1–6. https://doi.org/10.1002/ajh.23571
Article
PubMed
Google Scholar
Pradhan L, Nabzdyk C, Andersen ND et al (2009) Inflammation and neuropeptides: the connection in diabetic wound healing. Expert Rev Mol Med 11:1–24. https://doi.org/10.1017/S1462399409000945
Article
Google Scholar
Rennekampff HO, Hansbrough JF, Kiessig V, Doré C, Sticherling M, Schröder JM (2000) Bioactive interleukin-8 is expressed in wounds and enhances wound healing. J Surg Res 93:41–54. https://doi.org/10.1006/jsre.2000.5892
CAS
Article
PubMed
Google Scholar
Engelhardt E, Toksoy A, Goebeler M, Debus S, Bröcker EB, Gillitzer R (1998) Chemokines IL-8, GROα, MCP-1, IP-10, and mig are sequentially and differentially expressed during phase-specific infiltration of leukocyte subsets in human wound healing. Am J Pathol 153:1849–1860. https://doi.org/10.1016/S0002-9440(10)65699-4
CAS
Article
PubMed
PubMed Central
Google Scholar
Meng L, Guo X, Yang X et al (2019) Human α defensins promote the expression of the inflammatory cytokine interleukin-8 under high-glucose conditions: novel insights into the poor healing of diabetic foot ulcers. J Biochem Mol Toxicol 33:1–8. https://doi.org/10.1002/jbt.22351
CAS
Article
Google Scholar
Regnault V, de Maistre E, Carteaux J-P, Gruel Y, Nguyen P, Tardy B, Lecompte T (2003) Platelet activation induced by human antibodies to interleukin-8. Blood 101:1419–1421. https://doi.org/10.1182/blood-2002-02-0620
CAS
Article
PubMed
Google Scholar
Bester J, Pretorius E (2016) Effects of IL-1β, IL-6 and IL-8 on erythrocytes, platelets and clot viscoelasticity. Sci Rep 6:32188. https://doi.org/10.1038/srep32188
CAS
Article
PubMed
PubMed Central
Google Scholar
Fantuzzi G, Dinarello CA (1996) The inflammatory response in interleukin-1 beta-deficient mice: comparison with other cytokine-related knock-out mice. J Leukoc Biol 59:489–493. https://doi.org/10.1002/jlb.59.4.489
CAS
Article
PubMed
Google Scholar
Wanderer AA (2009) Rationale for IL-1beta targeted therapy for ischemia-reperfusion induced pulmonary and other complications in sickle cell disease. J Pediatr Hematol Oncol 31:537–538. https://doi.org/10.1097/MPH.0b013e3181acd89d
CAS
Article
PubMed
Google Scholar