Skip to main content

Advertisement

Log in

High levels of proinflammatory cytokines IL-6 and IL-8 are associated with a poor clinical outcome in sickle cell anemia

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Sickle cell anemia (SCA) pathophysiology is characterized by the activation of sickle red blood cells, reticulocytes, leukocytes, platelets, and endothelial cells, and with the expression of several inflammatory molecules. Therefore, it is conceivable that variations in levels of proinflammatory cytokines may act as a signaling of differential clinical course in SCA. Here, we evaluated the clinical impact of proinflammatory cytokines interleukin 1-β (IL-1β), interleukin 6 (IL-6), and interleukin 8 (IL-8) in 79 patients with SCA, followed in a single reference center from northeastern Brazil. The main clinical/laboratory data were obtained from patient interview and medical records. The proinflammatory markers IL-1β, IL-6, and IL-8 were evaluated by using commercially available enzyme-linked immunosorbent assay kits. According to levels of the proinflammatory markers, we observed that patients who had a higher frequency of VOC per year (P = 0.0236), acute chest syndrome (P = 0.01), leg ulcers (P = 0.0001), osteonecrosis (P = 0.0006), stroke (P = 0.0486), and priapism (P = 0.0347) had higher IL-6 levels compared with patients without these clinical complications. Furthermore, increased levels of IL-8 were found in patients who presented leg ulcers (P = 0.0184). No significant difference was found for IL-1β levels (P > 0.05). In summary, the present study emphasizes the role of inflammation in SCA pathophysiology, reveals an association of IL-8 levels and leg ulcer occurrence, and indicates that IL-6 levels can be used as a useful predictor for poor outcomes in SCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Piel FB, Steinberg MH, Rees DC (2017) Sickle cell disease. N Engl J Med 376:1561–1573. https://doi.org/10.1056/NEJMra1510865

    Article  CAS  PubMed  Google Scholar 

  2. Habara A, Steinberg MH (2016) Minireview: genetic basis of heterogeneity and severity in sickle cell disease. Exp Biol Med (Maywood) 241:689–696. https://doi.org/10.1177/1535370216636726

    Article  CAS  Google Scholar 

  3. Kato GJ, Gladwin MT, Steinberg MH (2007) Deconstructing sickle cell disease: reappraisal of the role of hemolysis in the development of clinical subphenotypes. Blood Rev 21:37–47. https://doi.org/10.1016/j.blre.2006.07.001

    Article  PubMed  Google Scholar 

  4. Lettre G, Sankaran VG, Bezerra MAC, Araújo AS, Uda M, Sanna S, Cao A, Schlessinger D, Costa FF, Hirschhorn JN, Orkin SH (2008) DNA polymorphisms at the BCL11A, HBS1L-MYB, and -globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. Proc Natl Acad Sci 105:11869–11874. https://doi.org/10.1073/pnas.0804799105

    Article  PubMed  Google Scholar 

  5. Bae HT, Baldwin CT, Sebastiani P, Telen MJ, Ashley-Koch A, Garrett M, Hooper WC, Bean CJ, Debaun MR, Arking DE, Bhatnagar P, Casella JF, Keefer JR, Barron-Casella E, Gordeuk V, Kato GJ, Minniti C, Taylor J, Campbell A, Luchtman-Jones L, Hoppe C, Gladwin MT, Zhang Y, Steinberg MH (2012) Meta-analysis of 2040 sickle cell anemia patients: BCL11A and HBS1L-MYB are the major modifiers of HbF in African Americans. Blood 120:1961–1962. https://doi.org/10.1182/blood-2012-06-432849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Steinberg MH, Sebastiani P (2012) Genetic modifiers of sickle cell disease. Am J Hematol 87:795–803. https://doi.org/10.1002/ajh.23232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Smith WR, Coyne P, Smith VS, Mercier B (2003) Temperature changes, temperature extremes, and their relationship to emergency department visits and hospitalizations for sickle cell crisis. Pain Manag Nurs 4:106–111. https://doi.org/10.1016/s1524-9042(02)54211-9

    Article  PubMed  Google Scholar 

  8. Rogovik AL, Persaud J, Friedman JN, Kirby MA, Goldman RD (2011) Pediatric vasoocclusive crisis and weather conditions. J Emerg Med 41:559–565. https://doi.org/10.1016/j.jemermed.2010.05.006

    Article  PubMed  Google Scholar 

  9. Carvalho MOS, Araujo-Santos T, Reis JHO, Rocha LC, Cerqueira BAV, Luz NF, Lyra IM, Lopes VM, Barbosa CG, Fiuza LM, Santiago RP, Figueiredo CVB, da Guarda CC, Barral Neto M, Borges VM, Gonçalves MS (2018) Inflammatory mediators in sickle cell anaemia highlight the difference between steady state and crisis in paediatric patients. Br J Haematol 182:933–936. https://doi.org/10.1111/bjh.14896

    Article  PubMed  Google Scholar 

  10. Zhang D, Xu C, Manwani D, Frenette PS (2016) Neutrophils, platelets, and inflammatory pathways at the nexus of sickle cell disease pathophysiology. Blood 127:801–809. https://doi.org/10.1182/blood-2015-09-618538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rees DC, Williams TN, Gladwin MT (2010) Sickle-cell disease. Lancet 376:2018–2031. https://doi.org/10.1016/S0140-6736(10)61029-X

    Article  CAS  PubMed  Google Scholar 

  12. Bandeira ICJ, Rocha LBS, Barbosa MC, Elias DB, Querioz JA, Freitas MV, Gonçalves RP (2014) Chronic inflammatory state in sickle cell anemia patients is associated with HBB*S haplotype. Cytokine 65:217–221. https://doi.org/10.1016/j.cyto.2013.10.009

    Article  CAS  PubMed  Google Scholar 

  13. Manwani D, Frenette PS (2013) Vaso-occlusion in sickle cell disease: pathophysiology and novel targeted therapies. Blood 122:3892–3898. https://doi.org/10.1182/blood-2013-05-498311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pathare A, Al Kindi S, Alnaqdy AA et al (2004) Cytokine profile of sickle cell disease in Oman. Am J Hematol 77:323–328. https://doi.org/10.1002/ajh.20196

    Article  CAS  PubMed  Google Scholar 

  15. Alagbe AE, Justo Junior AS, Ruas LP et al (2018) Interleukin-27 and interleukin-37 are elevated in sickle cell anemia patients and inhibit in vitro secretion of interleukin-8 in neutrophils and monocytes. Cytokine 107:85–92. https://doi.org/10.1016/j.cyto.2017.12.001

    Article  CAS  PubMed  Google Scholar 

  16. Conran N, Franco-Penteado CF, Costa FF (2009) Newer aspects of the pathophysiology of sickle cell disease vaso-occlusion. Hemoglobin 33:1–16. https://doi.org/10.1080/03630260802625709

    Article  CAS  PubMed  Google Scholar 

  17. Chiang EY, Frenette PS (2005) Sickle cell vaso-occlusion. Hematol Oncol Clin North Am 19:771–784. https://doi.org/10.1016/j.hoc.2005.08.002

    Article  PubMed  Google Scholar 

  18. Lanaro C, Franco-Penteado CF, Albuqueque DM et al (2009) Altered levels of cytokines and inflammatory mediators in plasma and leukocytes of sickle cell anemia patients and effects of hydroxyurea therapy. J Leukoc Biol 85:235–242. https://doi.org/10.1189/jlb.0708445

    Article  CAS  PubMed  Google Scholar 

  19. Wun T (2001) The role of inflammation and leukocytes in the pathogenesis of sickle cell disease; haemoglobinopathy. Hematology 5:403–412. https://doi.org/10.1080/10245332.2000.11746536

    Article  CAS  PubMed  Google Scholar 

  20. Ware RE, de Montalembert M, Tshilolo L, Abboud MR (2017) Sickle cell disease. Lancet (London, England) 390:311–323. https://doi.org/10.1016/S0140-6736(17)30193-9

    Article  Google Scholar 

  21. da Silva RR, Pereira MC, Melo Rêgo MJB, Domingues Hatzlhofer BL, da Silva Araújo A, Cavalcanti Bezerra MA, da Rocha Pitta I, da Rocha Pitta MG (2014) Evaluation of Th17 related cytokines associated with clinical and laboratorial parameters in sickle cell anemia patients with leg ulcers. Cytokine 65:143–147. https://doi.org/10.1016/j.cyto.2013.11.012

    Article  CAS  PubMed  Google Scholar 

  22. Cavalcante JEA, Machado RPG, Laurentino MR et al (2016) Clinical events and their relation to the tumor necrosis factor-alpha and interleukin-10 genotypes in sickle-cell-anemia patients. Hematol Oncol Stem Cell Ther 9:14–19. https://doi.org/10.1016/j.hemonc.2015.11.002

    Article  CAS  PubMed  Google Scholar 

  23. Mihara M, Hashizume M, Yoshida H et al (2012) IL-6/IL-6 receptor system and its role in physiological and pathological conditions. Clin Sci (Lond) 122:143–159. https://doi.org/10.1042/CS20110340

    Article  CAS  Google Scholar 

  24. Kang S, Tanaka T, Narazaki M, Kishimoto T (2019) Targeting interleukin-6 signaling in clinic. Immunity 50:1007–1023. https://doi.org/10.1016/j.immuni.2019.03.026

    Article  CAS  PubMed  Google Scholar 

  25. Pierrot-Gallo BS, Vicari P, Matsuda SS, Adegoke SA, Mecabo G, Figueiredo MS (2015) Haptoglobin gene polymorphisms and interleukin-6 and -8 levels in patients with sickle cell anemia. Rev Bras Hematol Hemoter 37:329–335. https://doi.org/10.1016/j.bjhh.2015.07.006

    Article  PubMed  PubMed Central  Google Scholar 

  26. Taylor SC, Shacks SJ, Mitchell RA, Banks A (1995) Serum interleukin-6 levels in the steady state of sickle cell disease. J Interf Cytokine Res 15:1061–1064. https://doi.org/10.1089/jir.1995.15.1061

    Article  CAS  Google Scholar 

  27. Hibbert JM, Hsu LL, Bhathena SJ, Irune I, Sarfo B, Creary MS, Gee BE, Mohamed AI, Buchanan ID, al-Mahmoud A, Stiles JK (2005) Proinflammatory cytokines and the hypermetabolism of children with sickle cell disease. Exp Biol Med (Maywood) 230:68–74. https://doi.org/10.1177/153537020523000109

    Article  CAS  Google Scholar 

  28. Costa MFH, Torres LC, da Matta MC et al (2019) Interleukin-6 in pregnancy with sickle cell disease. Hematol Transfus Cell Ther. https://doi.org/10.1016/j.htct.2019.02.001

  29. Sarray S, Saleh LR, Lisa Saldanha F, al-Habboubi HH, Mahdi N, Almawi WY (2015) Serum IL-6, IL-10, and TNFα levels in pediatric sickle cell disease patients during vasoocclusive crisis and steady state condition. Cytokine 72:43–47. https://doi.org/10.1016/j.cyto.2014.11.030

    Article  CAS  PubMed  Google Scholar 

  30. Van Beers EJ, Yang Y, Raghavachari N, Tian X, Allen DT, Nichols JS, Mendelsohn L, Nekhai S, Gordeuk VR, Taylor 6th JG, Kato GJ (2015) Iron, inflammation, and early death in adults with sickle cell disease. Circ Res 116:298–306. https://doi.org/10.1161/CIRCRESAHA.116.304577

  31. Zahran AM, Nafady A, Saad K et al (2020) Effect of hydroxyurea treatment on the inflammatory markers among children with sickle cell disease. Clin Appl Thromb Hemost 26. https://doi.org/10.1177/1076029619895111

  32. Harada A, Sekido N, Akahoshi T et al (1994) Essential involvement of interleukin-8 (IL-8) in acute inflammation. J Leukoc Biol 56:559–564. https://doi.org/10.1002/jlb.56.5.559

    Article  CAS  PubMed  Google Scholar 

  33. Xie K (2001) Interleukin-8 and human cancer biology. Cytokine Growth Factor Rev 12:375–391. https://doi.org/10.1016/s1359-6101(01)00016-8

  34. Niu X, Nouraie M, Campbell A, Rana S, Minniti CP, Sable C, Darbari D, Dham N, Reading NS, Prchal JT, Kato GJ, Gladwin MT, Castro OL, Gordeuk VR (2009) Angiogenic and inflammatory markers of cardiopulmonary changes in children and adolescents with sickle cell disease. PLoS One 4:e7956. https://doi.org/10.1371/journal.pone.0007956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gonçalves MS, Queiroz IL, Cardoso SA et al (2001) Interleukin 8 as a vaso-occlusive marker in Brazilian patients with sickle cell disease. Brazilian J Med Biol Res = Rev Bras Pesqui medicas e Biol 34:1309–1313. https://doi.org/10.1590/s0100-879x2001001000011

    Article  Google Scholar 

  36. Alagbe AE, Olaniyi JA, Aworanti OW (2018) Adult sickle cell anaemia patients in bone pain crisis have elevated pro-inflammatory cytokines. Mediterr J Hematol Infect Dis 10:e2018017. https://doi.org/10.4084/MJHID.2018.017

    Article  PubMed  PubMed Central  Google Scholar 

  37. Adegoke SA, Kuti BP, Omole KO, Smith OS, Oyelami OA, Adeodu OO (2018) Acute chest syndrome in sickle cell anaemia: higher serum levels of interleukin-8 and highly sensitive C-reactive proteins are associated with impaired lung function. Paediatr Int Child Health 38:244–250. https://doi.org/10.1080/20469047.2018.1519988

    Article  PubMed  Google Scholar 

  38. Abboud MR, Taylor EC, Habib D et al (2008) Elevated serum and bronchoalveolar lavage fluid levels of interleukin 8 and granulocyte colony-stimulating factor associated with the acute chest syndrome in patients with sickle cell disease. Br J Haematol 111:482–490. https://doi.org/10.1111/j.1365-2141.2000.02358.x

    Article  Google Scholar 

  39. Cajado C, Cerqueira BAV, Couto FD et al (2011) TNF-alpha and IL-8: serum levels and gene polymorphisms (-308G>A and -251A>T) are associated with classical biomarkers and medical history in children with sickle cell anemia. Cytokine 56:312–317. https://doi.org/10.1016/j.cyto.2011.07.002

    Article  CAS  PubMed  Google Scholar 

  40. Singh K, Agrawal NK, Gupta SK et al (2016) Increased expression of TLR9 associated with pro-inflammatory S100A8 and IL-8 in diabetic wounds could lead to unresolved inflammation in type 2 diabetes mellitus (T2DM) cases with impaired wound healing. J Diabetes Complicat 30:99–108. https://doi.org/10.1016/j.jdiacomp.2015.10.002

    Article  PubMed  Google Scholar 

  41. Peral MC, Rachid MM, Gobbato NM, Huaman Martinez MA, Valdez JC (2010) Interleukin-8 production by polymorphonuclear leukocytes from patients with chronic infected leg ulcers treated with Lactobacillus plantarum. Clin Microbiol Infect 16:281–286. https://doi.org/10.1111/j.1469-0691.2009.02793.x

    Article  CAS  PubMed  Google Scholar 

  42. Minniti CP, Delaney K-MH, Gorbach AM et al (2014) Vasculopathy, inflammation, and blood flow in leg ulcers of patients with sickle cell anemia. Am J Hematol 89:1–6. https://doi.org/10.1002/ajh.23571

    Article  PubMed  Google Scholar 

  43. Pradhan L, Nabzdyk C, Andersen ND et al (2009) Inflammation and neuropeptides: the connection in diabetic wound healing. Expert Rev Mol Med 11:1–24. https://doi.org/10.1017/S1462399409000945

    Article  Google Scholar 

  44. Rennekampff HO, Hansbrough JF, Kiessig V, Doré C, Sticherling M, Schröder JM (2000) Bioactive interleukin-8 is expressed in wounds and enhances wound healing. J Surg Res 93:41–54. https://doi.org/10.1006/jsre.2000.5892

    Article  CAS  PubMed  Google Scholar 

  45. Engelhardt E, Toksoy A, Goebeler M, Debus S, Bröcker EB, Gillitzer R (1998) Chemokines IL-8, GROα, MCP-1, IP-10, and mig are sequentially and differentially expressed during phase-specific infiltration of leukocyte subsets in human wound healing. Am J Pathol 153:1849–1860. https://doi.org/10.1016/S0002-9440(10)65699-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Meng L, Guo X, Yang X et al (2019) Human α defensins promote the expression of the inflammatory cytokine interleukin-8 under high-glucose conditions: novel insights into the poor healing of diabetic foot ulcers. J Biochem Mol Toxicol 33:1–8. https://doi.org/10.1002/jbt.22351

    Article  CAS  Google Scholar 

  47. Regnault V, de Maistre E, Carteaux J-P, Gruel Y, Nguyen P, Tardy B, Lecompte T (2003) Platelet activation induced by human antibodies to interleukin-8. Blood 101:1419–1421. https://doi.org/10.1182/blood-2002-02-0620

    Article  CAS  PubMed  Google Scholar 

  48. Bester J, Pretorius E (2016) Effects of IL-1β, IL-6 and IL-8 on erythrocytes, platelets and clot viscoelasticity. Sci Rep 6:32188. https://doi.org/10.1038/srep32188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fantuzzi G, Dinarello CA (1996) The inflammatory response in interleukin-1 beta-deficient mice: comparison with other cytokine-related knock-out mice. J Leukoc Biol 59:489–493. https://doi.org/10.1002/jlb.59.4.489

    Article  CAS  PubMed  Google Scholar 

  50. Wanderer AA (2009) Rationale for IL-1beta targeted therapy for ischemia-reperfusion induced pulmonary and other complications in sickle cell disease. J Pediatr Hematol Oncol 31:537–538. https://doi.org/10.1097/MPH.0b013e3181acd89d

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge all subjects and their parents for cooperation in this study.

Funding

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Grant No. 2014/00984-3), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Fundo de Apoio ao Ensino, Pesquisa e Extensão-FAEPEX/UNICAMP (Brazil). DAP-M was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Grant No. 2017/23117-1).

Author information

Authors and Affiliations

Authors

Contributions

IFD performed experiments, analyzed and interpreted data, performed statistical analyses, and drafted the manuscript. DAP-M, MJVCS, RTDO, AEA, CL, and DMA performed experiments, updated the clinical data, and reviewed the manuscript. MHSLB, ASA, FFC, and MAB recruited patients, updated the clinical data, and reviewed the manuscript. ARL-A analyzed and interpreted data, performed statistical analyses, and reviewed the manuscript. MFS and MNNS conceived and designed the study and reviewed the manuscript. MNNS gave the final approval of the version to be submitted.

Corresponding author

Correspondence to Magnun N. N. Santos.

Ethics declarations

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008.

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all patients for being included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domingos, I.F., Pereira-Martins, D.A., Sobreira, M.J.V.C. et al. High levels of proinflammatory cytokines IL-6 and IL-8 are associated with a poor clinical outcome in sickle cell anemia. Ann Hematol 99, 947–953 (2020). https://doi.org/10.1007/s00277-020-03978-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-020-03978-8

Keywords

Navigation