Skip to main content
Log in

Impact of clinical features, cytogenetics, genetic mutations, and methylation dynamics of CDKN2B and DLC-1 promoters on treatment response to azacitidine

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Azacitidine (AZA) is a DNA hypomethylation agent administered in myeloid neoplasms; however, there is still a lack of established predictors of response. We studied 113 patients with myelodysplastic syndromes (n = 85) or acute myeloid leukemia (n = 28) who received AZA to assess the predictive value on response of clinical features, cytogenetics, and molecular markers. Overall, 46 patients (41%) responded to AZA. Platelet doubling after the first AZA cycle was associated with a better response (68% vs. 32% responders, P = 0.041). Co-occurrence of chromosome 7 abnormalities and 17p deletion was associated with a worse response (P = 0.039). Pre-treatment genetic mutations were detected in 98 patients (87%) and methylation of CDKN2B and DLC-1 promoters were detected in 50 (44%) and 37 patients (33%), respectively. Patients with SF3B1 mutations showed a better response to AZA (68% vs. 35% responders, P = 0.008). In contrast, subjects with mutations in transcription factors (RUNX1, SETBP1, NPM1) showed a worse response (20% vs. 47% responders, P = 0.014). DLC-1 methylation pre-treatment was associated with poor clinical features and its reduction post-treatment resulted in a better response to AZA in MDS patients (P = 0.037). In conclusion, we have identified several predictors of response to AZA that could help select the best candidates for this treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Itzykson R, Fenaux P (2014) Epigenetics of myelodysplastic syndromes. Leukemia 28:497–506

    Article  CAS  Google Scholar 

  2. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Finelli C, Giagounidis A, Schoch R, Gattermann N, Sanz G, List A, Gore SD, Seymour JF, Bennett JM, Byrd J, Backstrom J, Zimmerman L, McKenzie D, Beach C, Silverman LR, International Vidaza High-Risk MDS Survival Study Group (2009) Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol 10:223–232

    Article  CAS  Google Scholar 

  3. Dombret H, Seymour JF, Butrym A, Wierzbowska A, Selleslag D, Jang JH, Kumar R, Cavenagh J, Schuh AC, Candoni A, Récher C, Sandhu I, Bernal del Castillo T, Al-Ali HK, Martinelli G, Falantes J, Noppeney R, Stone RM, Minden MD, McIntyre H, Songer S, Lucy LM, Beach CL, Döhner H (2015) International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with > 30% blasts. Blood 126:291–299

    Article  CAS  Google Scholar 

  4. Unnikrishnan A, Papaemmanuil E, Beck D, Deshpande NP, Verma A, Kumari A, Woll PS, Richards LA, Knezevic K, Chandrakanthan V, Thoms JAI, Tursky ML, Huang Y, Ali Z, Olivier J, Galbraith S, Kulasekararaj AG, Tobiasson M, Karimi M, Pellagatti A, Wilson SR, Lindeman R, Young B, Ramakrishna R, Arthur C, Stark R, Crispin P, Curnow J, Warburton P, Roncolato F, Boultwood J, Lynch K, Jacobsen SEW, Mufti GJ, Hellstrom-Lindberg E, Wilkins MR, MacKenzie KL, Wong JWH, Campbell PJ, Pimanda JE (2017) Integrative genomics identifies the molecular basis of resistance to azacitidine therapy in myelodysplastic syndromes. Cell Rep 20:572–585

    Article  CAS  Google Scholar 

  5. Wang H, Li Y, Lv N, Li Y, Wang L, Yu L (2018) Predictors of clinical responses to hypomethylating agents in acute myeloid leukemia or myelodysplastic syndromes. Ann Hematol 97:2025–2038

    Article  Google Scholar 

  6. Itzykson R, Kosmider O, Cluzeau T, Mansat-De Mas V, Dreyfus F, Beyne-Rauzy O, Quesnel B, Vey N, Gelsi-Boyer V, Raynaud S, Preudhomme C, Adès L, Fenaux P, Fontenay M, Groupe Francophone des Myelodysplasies (GFM) (2011) Impact of TET2 mutations on response rate to azacitidine in myelodysplastic syndromes and low blast count acute myeloid leukemias. Leukemia 25:1147–1152

    Article  CAS  Google Scholar 

  7. Bejar R, Lord A, Stevenson K, Bar-Natan M, Pérez-Ladaga A, Zaneveld J, Wang H, Caughey B, Stojanov P, Getz G, Garcia-Manero G, Kantarjian H, Chen R, Stone RM, Neuberg D, Steensma DP, Ebert BL (2014) TET2 mutations predict response to hypomethylating agents in myelodysplastic syndrome patients. Blood 124:2705–2712

    Article  CAS  Google Scholar 

  8. van der Helm LH, Alhan C, Wijermans PW, van Marwijk KM, Schaafsma R, Biemond BJ, Beeker A, Hoogendoorn M, van Rees BP, de Weerdt O, Wegman J, Libourel WJ, Luykx-de Bakker SA, Minnema MC, Brouwer RE, Croon-de Boer F, Eefting M, Jie KS, van de Loosdrecht AA, Koedam J, Veeger NJ, Vellenga E, Huls G (2011) Platelet doubling after the first azacitidine cycle is a promising predictor for response in myelodysplastic syndromes (MDS), chronic myelomonocytic leukaemia (CMML) and acute myeloid leukaemia (AML) patients in the Dutch azacitidine compassionate named patient programme. Br J Haematol 155:599–606

    Article  Google Scholar 

  9. Zeidan AM, Lee JW, Prebet T, Greenberg P, Sun Z, Juckett M, Smith MR, Paietta E, Gabrilove J, Erba HP, Katterling RP, Tallman MS, Gore SD (2014) Platelet count doubling after the first cycle of azacitidine therapy predicts eventual response and survival in patients with myelodysplastic syndromes and oligoblastic acute myeloid leukaemia but does not add to prognostic utility of the revised IPSS. Br J Haematol 167:62–68

    Article  CAS  Google Scholar 

  10. Raj K, John A, Ho A, Chronis C, Khan S, Samuel J, Pomplun S, Thomas NS, Mufti GJ (2007) CDKN2B methylation status and isolated chromosome 7 abnormalities predict responses to treatment with 5-azacytidine. Leukemia 21:1937–1944

    Article  CAS  Google Scholar 

  11. Chen X, Wood BL, Cherian S (2019) Immunophenotypic features of myeloid neoplasms associated with chromosome 7 abnormalities. Cytometry B Clin Cytom 96:300–309

    Article  CAS  Google Scholar 

  12. Yang AS, Doshi KD, Choi SW, Mason JB, Mannari RK, Gharybian V, Luna R, Rashid A, Shen L, Estecio MR, Kantarjian HM, Garcia-Manero G, Issa JP (2006) DNA methylation changes after 5-aza-2′-deoxycytidine therapy in patients with leukemia. Cancer Res 66:5495–5503

    Article  CAS  Google Scholar 

  13. Cui XY, Wang N, Yang BX, Gao WF, Lin YM, Yao XR, Ma XT (2012) HSPB8 is methylated in hematopoietic malignancies and overexpression of HSPB8 exhibits antileukemia effect. Exp Hematol 40:14–21

    Article  Google Scholar 

  14. Lund K, Cole JJ, VanderKraats ND, McBryan T, Pchelintsev NA, Clark W, Copland M, Edwards JR, Adams PD (2014) DNMT inhibitors reverse a specific signature of aberrant promoter DNA methylation and associated gene silencing in AML. Genome Biol 15:406

    Article  Google Scholar 

  15. Achille NJ, Othus M, Phelan K, Zhang S, Cooper K, Godwin JE, Appelbaum FR, Radich JP, Erba HP, Nand S, Zeleznik-Le NJ (2016) Association between early promoter-specific DNA methylation changes and outcome in older acute myeloid leukemia patients. Leuk Res 42:68–74

    Article  CAS  Google Scholar 

  16. Bies J, Sramko M, Fares J, Rosu-Myles M, Zhang S, Koller R, Wolff L (2010) Myeloid-specific inactivation of p15Ink4b results in monocytosis and predisposition to myeloid leukemia. Blood 116:979–987

    Article  CAS  Google Scholar 

  17. Shen L, Kantarjian H, Guo Y, Lin E, Shan J, Huang X, Berry D, Ahmed S, Zhu W, Pierce S, Kondo Y, Oki Y, Jelinek J, Saba H, Estey E, Issa JP (2010) DNA methylation predicts survival and response to therapy in patients with myelodysplastic syndromes. J Clin Oncol 28:605–6513

    Article  CAS  Google Scholar 

  18. Durkin ME, Yuan BZ, Zhou X, Zimonjic DB, Lowy DR, Thorgeirsson SS, Popescu NC (2007) DLC-1: a Rho GTPase-activating protein and tumour suppressor. J Cell Mol Med 11:1185–1207

    Article  CAS  Google Scholar 

  19. Ullmannova-Benson V, Guan M, Zhou X, Tripathi V, Yang XY, Zimonjic DB, Popescu NC (2009) DLC1 tumor suppressor gene inhibits migration and invasion of multiple myeloma cells through RhoA GTPase pathway. Leukemia 23:383–390

    Article  CAS  Google Scholar 

  20. Fu HY, Wu DS, Zhou HR, Shen JZ (2014) CpG island methylator phenotype and its relationship with prognosis in adult acute leukemia patients. Hematology 19:329–337

    Article  CAS  Google Scholar 

  21. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M, Vardiman JW (2016) The 2016 revision to the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia. Blood 127:2391–2405

    Article  CAS  Google Scholar 

  22. Cheson BD, Greenberg PL, Bennett JM, Lowenberg B, Wijermans PW, Nimer SD, Pinto A, Beran M, de Witte TM, Stone RM, Mittelman M, Sanz GF, Gore SD, Schiffer CA, Kantarjian H (2006) Clinical application and proposal for modification of the International Working Group (IWG) response criteria in myelodysplasia. Blood 108:419–425

    Article  CAS  Google Scholar 

  23. Kopanos C, Tsiolkas V, Kouris A, Chapple CE, Albarca Aguilera M, Meyer R, Massouras A (2019) VarSome: the human genomic variant search engine. Bioinformatics 35:1978–1980

    Article  CAS  Google Scholar 

  24. Kuendgen A, Müller-Thomas C, Lauseker M, Haferlach T, Urbaniak P, Schroeder T, Brings C, Wulfert M, Meggendorfer M, Hildebrandt B, Betz B, Royer-Pokora B, Gattermann N, Haas R, Germing U, Götze KS (2018) Efficacy of azacitidine is independent of molecular and clinical characteristics - an analysis of 128 patients with myelodysplastic syndromes or acute myeloid leukemia and a review of the literature. Oncotarget 9:27882–27894

    Article  Google Scholar 

  25. Xicoy B, Jiménez MJ, García O, Bargay J, Martínez-Robles V, Brunet S, Arilla MJ, Pérez de Oteyza J, Andreu R, Casaño FJ, Cervero CJ, Bailén A, Díez M, González B, Vicente AI, Pedro C, Bernal T, Luño E, Cedena MT, Palomera L, Simiele A, Calvo JM, Marco V, Gómez E, Gómez M, Gallardo D, Muñoz J, de Paz R, Grau J, Ribera JM, Benlloch LE, Sanz G (2014) Results of treatment with azacitidine in patients aged 75 years included in the Spanish registry of myelodysplastic syndromes. Leuk Lymphoma 55:1300–1303

    Article  CAS  Google Scholar 

  26. García-Delgado R, de Miguel D, Bailén A, González JR, Bargay J, Falantes JF, Andreu R, Ramos F, Tormo M, Brunet S, Figueredo A, Casaño J, Medina A, Badiella L, Jurado AF, Sanz G (2014) Effectiveness and safety of different azacitidine dosage regimens in patients with myelodysplastic syndromes or acute myeloid leukemia. Leuk Res 38:744–750

    Article  Google Scholar 

  27. Rüter B, Wijermans P, Claus R, Kunzmann R, Lübbert M (2007) Preferential cytogenetic response to continuous intravenous low-dose decitabine (DAC) administration in myelodysplastic syndrome with monosomy 7. Blood 110:1080–1082

    Article  Google Scholar 

  28. Rücker FG, Schlenk RF, Bullinger L, Kayser S, Teleanu V, Kett H, Habdank M, Kugler CM, Holzmann K, Gaidzik VI, Paschka P, Held G, von Lilienfeld-Toal M, Lübbert M, Fröhling S, Zenz T, Krauter J, Schlegelberger B, Ganser A, Lichter P, Döhner K, Döhner H (2012) TP53 alterations in acute myeloid leukemia with complex karyotype correlate with specific copy number alterations, monosomal karyotype, and dismal outcome. Blood 119:2114–2121

    Article  Google Scholar 

  29. Nahi H, Lehmann S, Bengtzen S, Jansson M, Möllgård L, Paul C, Merup M (2008) Chromosomal aberrations in 17p predict in vitro drug resistance and short overall survival in acute myeloid leukemia. Leuk Lymphoma 49:508–516

    Article  CAS  Google Scholar 

  30. Jabbour E, Garcia-Manero G, Ravandi F, Faderl S, O’Brien S, Fullmer A, Cortes JE, Wierda W, Kantarjian H (2013) Prognostic factors associated with disease progression and overall survival in patients with myelodysplastic syndromes treated with decitabine. Clin Lymphoma Myeloma Leuk 13:131–138

    Article  CAS  Google Scholar 

  31. Thépot S, Ben Abdelali R, Chevret S, Renneville A, Beyne-Rauzy O, Prébet T, Park S, Stamatoullas A, Guerci-Bresler A, Cheze S, Tertian G, Choufi B, Legros L, Bastié JN, Delaunay J, Chaury MP, Sanhes L, Wattel E, Dreyfus F, Vey N, Chermat F, Preudhomme C, Fenaux P, Gardin C, Groupe Francophone des Myélodysplasies (GFM) (2016) A randomized phase II trial of azacitidine +/− epoetin-β in lower-risk myelodysplastic syndromes resistant to erythropoietic stimulating agents. Haematologica 101:918–925

    Article  Google Scholar 

  32. Montalban-Bravo G, Takahashi K, Patel K, Wang F, Xingzhi S, Nogueras GM, Huang X, Pierola AA, Jabbour E, Colla S, Gañan-Gomez I, Borthakur G, Daver N, Estrov Z, Kadia T, Pemmaraju N, Ravandi F, Bueso-Ramos C, Chamseddine A, Konopleva M, Zhang J, Kantarjian H, Futreal A, Garcia-Manero G (2018) Impact of the number of mutations in survival and response outcomes to hypomethylating agents in patients with myelodysplastic syndromes or myelodysplastic/myeloproliferative neoplasms. Oncotarget 9:9714–9727

    Article  Google Scholar 

  33. Falconi G, Fabiani E, Piciocchi A, Criscuolo M, Fianchi L, Lindfors Rossi EL, Finelli C, Cerqui E, Ottone T, Molteni A, Parma M, Santarone S, Candoni A, Sica S, Leone G, Lo-Coco F, Voso MT (2019) Somatic mutations as markers of outcome after azacitidine and allogeneic stem cell transplantation in higher-risk myelodysplastic syndromes. Leukemia 33:785–790

    Article  Google Scholar 

  34. Wu P, Weng J, Li M, Lu Z, Deng C, Sun Q, Xu R, Geng S, Du X (2019) Co-occurrence of RUNX1 and ASXL1 mutations underlie poor response and outcome for MDS patients treated with HMAs. Am J Transl Res 11:3651–3658

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Steensma DP, Bejar R, Jaiswal S, Lindsley RC, Sekeres MA, Hasserjian RP, Ebert BL (2015) Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 126:9–16

    Article  CAS  Google Scholar 

  36. Kim TY, Jong HS, Song SH, Dimtchev A, Jeong SJ, Lee JW, Kim TY, Kim NK, Jung M, Bang YJ (2003) Transcriptional silencing of the DLC-1 tumor suppressor gene by epigenetic mechanism in gastric cancer cells. Oncogene 22:3943–3951

    Article  CAS  Google Scholar 

  37. Sahai E, Marshall CJ (2002) Rho-GTPases and cancer. Nat Rev Cancer 2:133–142

    Article  Google Scholar 

  38. Au SL, Wong CC, Lee JM, Wong CM, Ng IO (2013) EZH2-mediated H3K27me3 is involved in epigenetic repression of deleted in liver cancer 1 in human cancers. PLoS One 8:e68226

    Article  CAS  Google Scholar 

  39. Donaldson-Collier MC, Sungalee S, Zufferey M, Tavernari D, Katanayeva N, Battistello E, Mina M, Douglass KM, Rey T, Raynaud F, Manley S, Ciriello G, Oricchio E (2019) EZH2 oncogenic mutations drive epigenetic, transcriptional, and structural changes within chromatin domains. Nat Genet 51:517–528

    Article  CAS  Google Scholar 

  40. Schanz J, Tüchler H, Solé F, Mallo M, Luño E, Cervera J, Granada I, Hildebrandt B, Slovak ML, Ohyashiki K, Steidl C, Fonatsch C, Pfeilstöcker M, Nösslinger T, Valent P, Giagounidis A, Aul C, Lübbert M, Stauder R, Krieger O, Garcia-Manero G, Faderl S, Pierce S, Le Beau MM, Bennett JM, Greenberg P, Germing U, Haase D (2012) New comprehensive cytogenetic scoring system for primary myelodysplastic syndromes (MDS) and oligoblastic acute myeloid leukemia after MDS derived from an international database merge. J Clin Oncol 30:820–829

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Fernando Domingo, Paula Coll, and Yoana Hernández for their excellent assistance in optimizing DNA extraction and their help in molecular and cytogenetic studies.

Funding

This work was partly supported by the INT00038 grant from INCLIVA (Spain) and PI13/00636 grant from the Instituto de Salud Carlos III (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iván Martín.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All patient samples were acquired from the biobank of Hospital Clínico Universitario of Valencia in accordance with the 1964 Helsinki declaration and with the approval of the internal review of Bioethics and Medical Research of the Hospital Clínico Universitario of Valencia.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 454 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martín, I., Navarro, B., Serrano, A. et al. Impact of clinical features, cytogenetics, genetic mutations, and methylation dynamics of CDKN2B and DLC-1 promoters on treatment response to azacitidine. Ann Hematol 99, 527–537 (2020). https://doi.org/10.1007/s00277-020-03932-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-020-03932-8

Keywords

Navigation