Skip to main content

Advertisement

Log in

Phenotypic characterization of macrophages in the BMB sample of human acute leukemia

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Macrophages within tissues display a strong plastic ability in respond to environmental cues in both physiologic influences and disease. However, the macrophage phenotype and its distribution in the bone marrow biopsies (BMB) samples of human acute leukemia (AL) remain poorly understood. In this study, 97 BMB samples of patients with acute leukemia and 30 iron-deficiency anemias (IDA) as control group were evaluated with immunohistochemistry. In comparison with controls, the counts of CD68+, CD163+, and CD206+macrophages were remarkably increased in BMB samples of acute leukemia (P < 0.01), as well as their infiltration density was roaring up-regulation (P < 0.01). The expression levels of CD68+, CD163+, and CD206+macrophages were decreased in patients with complete remission, but there still existed statistically significant contrast to the control group (P < 0.01). The ratios of the CD163-positive cells or CD206-positive cells to CD68-positive cells were most prevalent in the BMB samples of human acute leukemia compared with the control group (P < 0.01), which support that macrophages were polarized to M2 macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xiao W, Bharadwaj M, Levine M, Farnhoud N, Pastore F, Getta BM, Hultquist A, Famulare C, Medina JS, Patel MA, Gao Q, Lewis N, Pichardo J, Baik J, Shaffer B, Giralt S, Rampal R, Devlin S, Cimera R, Zhang Y, Arcila ME, Papaemmanuil E, Levine RL, Roshal M (2018) PHF6 and DNMT3A mutations are enriched in distinct subgroups of mixed phenotype acute leukemia with T-lineage differentiation. Blood Adv 2(23):3526–3539. https://doi.org/10.1182/bloodadvances.2018023531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Muliaditan T, Caron J, Okesola M, Opzoomer JW, Kosti P, Georgouli M, Gordon P, Lall S, Kuzeva DM, Pedro L, Shields JD, Gillett CE, Diebold SS, Sanz-Moreno V, Ng T, Hoste E, Arnold JN (2018) Macrophages are exploited from an innate wound healing response to facilitate cancer metastasis. Nat Commun 9(1):2951. https://doi.org/10.1038/s41467-018-05346-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gombozhapova A, Rogovskaya Y, Shurupov V, Rebenkova M, Kzhyshkowska J, Popov SV, Karpov RS, Ryabov V (2017) Macrophage activation and polarization in post-infarction cardiac remodeling. J Biomed Sci 24(1):13. https://doi.org/10.1186/s12929-017-0322-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11(10):889–896. https://doi.org/10.1016/S0921-5093(02)00383-0

    Article  CAS  PubMed  Google Scholar 

  5. Komohara Y, Jinushi M, Takeya M (2014) Clinical significance of macrophage heterogeneity in human malignant tumors. Cancer Sci 105(1):1–8. https://doi.org/10.1111/cas.12314

    Article  CAS  PubMed  Google Scholar 

  6. Wang H, Li P, Wang L, Xia Z, Huang H, Lu Y, Li Z (2015) High numbers of CD68+ tumor-associated macrophages correlate with poor prognosis in extranodal NK/T-cell lymphoma, nasal type. Ann Hematol 94(9):1535–1544. https://doi.org/10.1007/s00277-015-2401-4

    Article  CAS  PubMed  Google Scholar 

  7. Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3(1):23–35. https://doi.org/10.1038/nri978

    Article  CAS  PubMed  Google Scholar 

  8. Souza NHC, Mesquita-Ferrari RA, Rodrigues MFSD, da Silva DFT, Ribeiro BG, Alves AN, Garcia MP, Nunes FD, da Silva Junior EM, França CM, Bussadori SK, Fernandes KPS (2018) Photobiomodulation and different macrophages phenotypes during muscle tissue repair. J Cell Mol Med 22(10):4922–4934. https://doi.org/10.1111/jcmm.13757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Song JX, Dian ZJ, Wen Y, Mei F, Li RW, Sa YL (2016) Assessment of the number and phenotype of macrophages in the human BMB samples of CML. Biomed res Int. https://doi.org/10.1155/2016/8086398

    Google Scholar 

  10. Ren CX, Leng RX, Fan YG, Pan HF, Li BZ, Wu CH, Wu Q, Wang NN, Xiong QR, Geng XP, Ye DQ (2017) Intratumoral and peritumoral expression of CD68 and CD206 in hepatocellular carcinoma and their prognostic value. Oncol Rep 38(2):886–898. https://doi.org/10.3892/or.2017.5738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pelekanou V, Villarroel-Espindola F, Schalper KA, Pusztai L, Rimm DL (2018) CD68, CD163, and matrix metalloproteinase 9 (MMP-9) co-localization in breast tumor microenvironment predicts survival differently in ER-positive and –negative cancers. Breast Cancer Res 20(1):154. https://doi.org/10.1186/s13058-018-1076-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lau SK, Chu PG, Weiss LM (2004) CD163: a specific marker of macrophages in paraffin-embedded tissue samples. Am J Clin Pathol 122(5):794–801

    Article  PubMed  Google Scholar 

  13. Enninga EAL, Chatzopoulos K, Butterfield JT, Sutor SL, Leontovich AA, Nevala WK, Flotte TJ, Markovic SN (2018) CD206-positive myeloid cells bind galectin-9 and promote a tumor-supportive microenvironment. J Pathol 245(4):468–477. https://doi.org/10.1002/path.5093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Thiele J, Braeckel C, Wagner S, Falini B, Dienemann D, Stein H, Fischer R (1992) Macrophages in normal human bone marrow and in chronic myeloproliferative disorders: an immunohistochemical and morphometric study by a new monoclonal antibody (PG-M1) on trephine biopsies. Virchows Arch A Pathol Anat Histopathol 421(1):33–39

    Article  CAS  PubMed  Google Scholar 

  15. Marchesi F, Cirillo M, Bianchi A, Gately M, Olimpieri OM, Cerchiara E, Renzi D, Micera A, Balzamino BO, Bonini S, Onetti Muda A, Avvisati G (2015) High density of CD68+/CD163+ tumour-associated macrophages (M2-TAM) at diagnosis is significantly correlated to unfavorable prognostic factors and to poor clinical outcomes in patients with diffuse large B-cell lymphoma. Hematol Oncol 33(2):110–112. https://doi.org/10.1002/hon.2142

    Article  CAS  PubMed  Google Scholar 

  16. Chen S, Yang X, Feng W, Yang F, Wang R, Chen C, Wang L, Lin Y, Ren Q, Zheng G (2017) Characterization of peritoneal leukemia-associated macrophages in Notch1-induced mouse T cell acute lymphoblastic leukemia. Mol Immunol 81:35–41. https://doi.org/10.1016/j.molimm.2016.11.014

    Article  CAS  PubMed  Google Scholar 

  17. Tang X, Mo C, Wang Y, Wei D, Xiao H (2013) Anti-tumour strategies aiming to target tumour-associated macrophages. Immunology 138(2):93–104. https://doi.org/10.1111/imm.12023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Takeya M, Komohara Y (2016) Role of tumor-associated macrophages in human malignancies: friend or foe? Pathol Int 66(9):491–505. https://doi.org/10.1111/pin.12440

    Article  PubMed  Google Scholar 

  19. Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4(1):71–78. https://doi.org/10.1038/nrc1256

    Article  CAS  PubMed  Google Scholar 

  20. Du Q, Tsuboi N, Shi Y, Ito S, Sugiyama Y, Furuhashi K, Endo N, Kim H, Katsuno T, Akiyama S, Matsuo S, Isobe KI, Maruyama S (2016) Transfusion of CD206+ M2 macrophages ameliorates antibody-mediated glomerulonephritis in mice. Am J Pathol 186(12):3176–3188. https://doi.org/10.1016/j.ajpath.2016.08.012

    Article  CAS  PubMed  Google Scholar 

  21. Buechler C, Ritter M, Orsó E, Langmann T, Klucken J, Schmitz G (2000) Regulation of scavenger receptor CD163 expression in human monocytes and macrophages by pro- and antiinflammatory stimuli. J Leukoc Biol 67(1):97–103

    Article  CAS  PubMed  Google Scholar 

  22. Davis BH, Zarev PV (2005) Human monocyte CD163 expression inversely correlates with soluble CD163 plasma levels. Cytometry B Clin Cytom 63(1):16–22

    Article  PubMed  Google Scholar 

  23. Barkal AA, Weiskopf K, Kao KS, Gordon SR, Rosental B, Yiu YY, George BM, Markovic M, Ring NG, Tsai JM, McKenna KM, Ho PY, Cheng RZ, Chen JY, Barkal LJ, Ring AM, Weissman IL, Maute RL (2018) Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy. Nat Immunol 19(1):76–84. https://doi.org/10.1038/s41590-017-0004-z

    Article  CAS  PubMed  Google Scholar 

  24. Hao NB, Lü MH, Fan YH, Cao YL, Zhang ZR, Yang SM (2012) Macrophages in tumor microenvironments and the progression of tumors. Clin Dev Immunol 948098. https://doi.org/10.1155/2012/948098

    Article  Google Scholar 

  25. Dehne N, Mora J, Namgaladze D, Weigert A, Brüne B (2017) Cancer cell and macrophage cross-talk in the tumor microenvironment. Curr Opin Pharmacol 35:12–19. https://doi.org/10.1016/j.coph.2017.04.007

    Article  CAS  PubMed  Google Scholar 

  26. Al-Matary YS, Botezatu L, Opalka B, Hönes JM, Lams RF, Thivakaran A, Schütte J, Köster R, Lennartz K, Schroeder T, Haas R, Dührsen U, Khandanpour C (2016) Acute myeloid leukemia cells polarize macrophages towards a leukemia supporting state in a growth factor independence 1 dependent manner. Haematologica 101(10):1216–1227. https://doi.org/10.3324/haematol.2016.143180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L, Garner H, Trouillet C, de Bruijn MF, Geissmann F, Rodewald HR (2015) Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518(7540):547–551. https://doi.org/10.1038/nature13989

    Article  CAS  PubMed  Google Scholar 

  28. Epelman S, Lavine KJ, Randolph GJ (2014) Origin and functions of tissue macrophages. Immunity 41(1):21–35. https://doi.org/10.1016/j.immuni.2014.06.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ginhoux F, Guilliams M (2016) Tissue-resident macrophage ontogeny and homeostasis. Immunity 44(3):439–449. https://doi.org/10.1016/j.immuni.2016.02.024

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the kind cooperation of the acute leukemia patients and the iron-deficiency anemia (IDA) patients.

Funding

This work was supported by grants from “the National Science Funding of China,” Grants: No.31460298, the Foundation Dr. Sa YL and “the Basic Research on Application of Joint Special Funding of Science and Technology Department of Yunnan Province-Kunming Medical University,” Grants: No.2014FZ070, the Foundation Mr. Song JX.

Author information

Authors and Affiliations

Authors

Contributions

Song JX carried out major experiments and partially participated in its design. Wen Y collected the BMB sample and partially performed the experiments. Li RW performed the experiments and analyzed the data. Dong T carried out the experiments. Tang YF contributes to data interpretation. Zhang JJ contributes in editing the study. Sa YL designed the project, drafted the manuscript, edited the manuscript, and submitted the manuscript. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Ya-Lian Sa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Medical Ethics Committee of Yunnan Provincial First People’s Hospital. All procedures performed in the study were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Written informed consent was obtained from patients to authorize their participation in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, JX., Wen, Y., Li, RW. et al. Phenotypic characterization of macrophages in the BMB sample of human acute leukemia. Ann Hematol 99, 539–547 (2020). https://doi.org/10.1007/s00277-020-03912-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-020-03912-y

Keywords

Navigation