Skip to main content
Log in

miR-144 regulates oxidative stress tolerance of thalassemic erythroid cell via targeting NRF2

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Thalassemia has a high prevalence in Thailand. Oxidative damage to erythroid cells is known to be one of the major etiologies in thalassemia pathophysiology. Oxidative stress status of thalassemia is potentiated by the heme, nonheme iron, and free iron resulting from imbalanced globin synthesis. In addition, levels of antioxidant proteins are reduced in α-thalassemia and β-thalassemia erythrocytes. However, the primary molecular mechanism for this phenotype remains unknown. Our study showed a high expression of miR-144 in β- and α-thalassemia. An increased miR-144 expression leads to decreased expression of nuclear factor erythroid 2-related factor 2 (NRF2) target, especially in α-thalassemia. In α-thalassemia, miR-144 and NRF2 target are associated with glutathione level and anemia severity. To study the effect of miR-144 expression, the gain-loss of miR-144 expression was performed by miR inhibitor and mimic transfection in the erythroblastic cell line. This study reveals that miR-144 expression was upregulated, whereas NRF2 expression and glutathione levels were decreased in comparison with the untreated condition after miR mimic transfection, while the reduction of miR-144 expression contributed to the increased NRF2 expression and glutathione level compared with the untreated condition after miR inhibitor transfection. Moreover, miR-144 overexpression leads to significantly increased sensitivity to oxidative stress at indicated concentrations of hydrogen peroxide (H2O2) and rescued by miR-144 inhibitor. Taken together, our findings suggest that dysregulation of miR-144 may play a role in the reduced ability of erythrocyte to deal with oxidative stress and increased RBC hemolysis susceptibility especially in thalassemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yuan J, Bunyaratvej A, Fucharoen S, Fung C, Shinar E, Schrier SL (1995) The instability of the membrane skeleton in thalassemic red blood cells. Blood 86(10):3945–3950

    CAS  PubMed  Google Scholar 

  2. Advani R, Rubin E, Mohandas N, Schrier SL (1992) Oxidative red blood cell membrane injury in the pathophysiology of severe mouse beta-thalassemia. Blood 79(4):1064–1067

    CAS  PubMed  Google Scholar 

  3. Advani R, Sorenson S, Shinar E, Lande W, Rachmilewitz E, Schrier SL (1992) Characterization and comparison of the red blood cell membrane damage in severe human alpha- and beta-thalassemia. Blood 79(4):1058–1063

    CAS  PubMed  Google Scholar 

  4. Schrier SL (2002) Pathophysiology of thalassemia. Curr Opin Hematol 9(2):123–126

    Article  PubMed  Google Scholar 

  5. Sadrzadeh SM, Graf E, Panter SS, Hallaway PE, Eaton JW (1984) Hemoglobin. A biologic Fenton reagent. J Biol Chem 259(23):14354–14356

    CAS  PubMed  Google Scholar 

  6. Kalpravidh RW, Tangjaidee T, Hatairaktham S, Charoensakdi R, Panichkul N, Siritanaratkul N, Fucharoen S (2013) Glutathione redox system in beta-thalassemia/Hb E patients. Sci World J 2013:543973. https://doi.org/10.1155/2013/543973

    Article  CAS  Google Scholar 

  7. Kassab-Chekir A, Laradi S, Ferchichi S, Haj Khelil A, Feki M, Amri F, Selmi H, Bejaoui M, Miled A (2003) Oxidant, antioxidant status and metabolic data in patients with beta-thalassemia. Clin Chim Acta 338(1–2):79–86

    Article  CAS  PubMed  Google Scholar 

  8. Meral A, Tuncel P, Surmen-Gur E, Ozbek R, Ozturk E, Gunay U (2000) Lipid peroxidation and antioxidant status in beta-thalassemia. Pediatr Hematol Oncol 17(8):687–693

    Article  CAS  PubMed  Google Scholar 

  9. Cheng ML, Ho HY, Tseng HC, Lee CH, Shih LY, Chiu DT (2005) Antioxidant deficit and enhanced susceptibility to oxidative damage in individuals with different forms of alpha-thalassaemia. Br J Haematol 128(1):119–127

    Article  CAS  PubMed  Google Scholar 

  10. Chiou SS, Tsao CJ, Tsai SM, Wu YR, Liao YM, Lin PC, Tsai LY (2014) Metabolic pathways related to oxidative stress in patients with hemoglobin h disease and iron overload. J Clin Lab Anal 28(4):261–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mirlohi MS, Yaghooti H, Shirali S, Aminasnafi A, Olapour S (2018) Increased levels of advanced glycation end products positively correlate with iron overload and oxidative stress markers in patients with beta-thalassemia major. Ann Hematol 97(4):679–684. https://doi.org/10.1007/s00277-017-3223-3

    Article  CAS  PubMed  Google Scholar 

  12. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  13. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136(4):642–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Siow RC, J Forman H (2013) Redox regulation of microRNAs in health and disease. Free Radic Biol Med 64:1–3

    Article  CAS  PubMed  Google Scholar 

  15. Nallamshetty S, Chan SY, Loscalzo J (2013) Hypoxia: a master regulator of microRNA biogenesis and activity. Free Radic Biol Med 64:20–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sangokoya C, Telen MJ, Chi JT (2010) microRNA miR-144 modulates oxidative stress tolerance and associates with anemia severity in sickle cell disease. Blood 116(20):4338–4348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ishii T, Itoh K, Takahashi S, Sato H, Yanagawa T, Katoh Y, Bannai S, Yamamoto M (2000) Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J Biol Chem 275(21):16023–16029

    Article  CAS  PubMed  Google Scholar 

  18. Motohashi H, Yamamoto M (2004) Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med 10(11):549–557

    Article  CAS  PubMed  Google Scholar 

  19. Harvey CJ, Thimmulappa RK, Singh A, Blake DJ, Ling G, Wakabayashi N, Fujii J, Myers A, Biswal S (2009) Nrf2-regulated glutathione recycling independent of biosynthesis is critical for cell survival during oxidative stress. Free Radic Biol Med 46(4):443–453

    Article  CAS  PubMed  Google Scholar 

  20. Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, Nabeshima Y (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236(2):313–322

    Article  CAS  PubMed  Google Scholar 

  21. Chan JY, Kwong M (2000) Impaired expression of glutathione synthetic enzyme genes in mice with targeted deletion of the Nrf2 basic-leucine zipper protein. Biochim Biophys Acta 1517(1):19–26

    Article  CAS  PubMed  Google Scholar 

  22. Kitamuro T, Takahashi K, Ogawa K, Udono-Fujimori R, Takeda K, Furuyama K, Nakayama M, Sun J, Fujita H, Hida W, Hattori T, Shirato K, Igarashi K, Shibahara S (2003) Bach1 functions as a hypoxia-inducible repressor for the heme oxygenase-1 gene in human cells. J Biol Chem 278(11):9125–9133

    Article  CAS  PubMed  Google Scholar 

  23. Lee JM, Chan K, Kan YW, Johnson JA (2004) Targeted disruption of Nrf2 causes regenerative immune-mediated hemolytic anemia. Proc Natl Acad Sci U S A 101(26):9751–9756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kawatani Y, Suzuki T, Shimizu R, Kelly VP, Yamamoto M (2011) Nrf2 and selenoproteins are essential for maintaining oxidative homeostasis in erythrocytes and protecting against hemolytic anemia. Blood 117(3):986–996

    Article  CAS  PubMed  Google Scholar 

  25. Srinoun K, Svasti S, Chumworathayee W, Vadolas J, Vattanaviboon P, Fucharoen S, Winichagoon P (2009) Imbalanced globin chain synthesis determines erythroid cell pathology in thalassemic mice. Haematologica 94(9):1211–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Amer J, Goldfarb A, Fibach E (2004) Flow cytometric analysis of the oxidative status of normal and thalassemic red blood cells. Cytometry A 60(1):73–80

    Article  PubMed  Google Scholar 

  27. Amer J, Ghoti H, Rachmilewitz E, Koren A, Levin C, Fibach E (2006) Red blood cells, platelets and polymorphonuclear neutrophils of patients with sickle cell disease exhibit oxidative stress that can be ameliorated by antioxidants. Br J Haematol 132(1):108–113

    Article  CAS  PubMed  Google Scholar 

  28. Chen SY, Wang Y, Telen MJ, Chi JT (2008) The genomic analysis of erythrocyte microRNA expression in sickle cell diseases. PLoS One 3(6):e2360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Goh SH, Josleyn M, Lee YT, Danner RL, Gherman RB, Cam MC, Miller JL (2007) The human reticulocyte transcriptome. Physiol Genomics 30:172–178

    Article  CAS  PubMed  Google Scholar 

  30. Wilson MC, Trakarnsanga K, Heesom KJ, Cogan N, Green C, Toye AM, Parsons SF, Anstee DJ, Frayne J (2016) Comparison of the proteome of adult and cord erythroid cells, and changes in the proteome following reticulocyte maturation. Mol Cell Proteomics 15(6):1938–1946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li B, Zhu X, Ward CM, Starlard-Davenport A, Takezaki M, Berry A, Ward A, Wilder C, Neunert C, Kutlar A, Pace BS (2019) MIR-144-mediated NRF2 gene silencing inhibits fetal hemoglobin expression in sickle cell disease. Exp Hematol 70:85–96

    Article  CAS  PubMed  Google Scholar 

  32. Zhou C, Zhao L, Zhenga J (2017) MicroRNA-144 modulates oxidative stress tolerance in SH-SY5Y cells by regulating nuclear factor erythroid 2-related factor 2-glutathione axis. Neurosci Lett 655:21–27

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Department of Pathology, Faculty of Medicine, and the Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University.

Authorship

KS was the principal investigator and takes primary responsibility for contributed to apply for funding, the study design, performed the experiment, interpretation of the data, drafting, and editing of the manuscript. NS contributed to the study design and the editing of the manuscript. KP and MW were responsible for specimen collection and the editing of the manuscript. SS contributed to the perform experiment and the editing of the manuscript. SF contributed to the study design and the editing of the manuscript. The final version of the article to be published was read and approved by all authors.

Funding

This work was supported by a Thailand research fund grant (TRG5780103), the government budget of Prince of Songkla University (MET6201015S), and the Faculty of Medical Technology, Prince of Songkla University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanitta Srinoun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Redundant publication

No substantial overlap with previous papers.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srinoun, K., Sathirapongsasuti, N., Paiboonsukwong, K. et al. miR-144 regulates oxidative stress tolerance of thalassemic erythroid cell via targeting NRF2. Ann Hematol 98, 2045–2052 (2019). https://doi.org/10.1007/s00277-019-03737-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-019-03737-4

Keywords

Navigation