IgG synthesis rate and anti-myelin oligodendrocyte glycoprotein antibody in CSF may be associated with the onset of CNS demyelination after haplo-HSCT

  • Xiao-hui Zhang
  • Xin Zhao
  • Chen-cong Wang
  • Wei Han
  • Huan Chen
  • Yu-hong Chen
  • Feng-rong Wang
  • Jing-zhi Wang
  • Yuan-yuan Zhang
  • Xiao-dong Mo
  • Yao Chen
  • Yu Wang
  • Hai-xia Fu
  • Ying-jun Chang
  • Lan-ping Xu
  • Kai-yan Liu
  • Xiao-jun Huang
Original Article

Abstract

Haploidentical hematopoietic stem cell transplant (haplo-HSCT) is an upfront and effective therapy for hematology patients, but it usually has many complications, such as neurological complications. As one of the neurological complications following haplo-HSCT, immune-mediated demyelinating diseases of the central nervous system (CNS) seriously affect a patient’s quality of life. However, the incidence, risk factors, and pathogenesis of CNS demyelination are not very well understood. Thirty of the 1526 patients (1.96%) suffered from CNS demyelination. In univariate analysis, we found that blood-brain barrier (BBB) permeability and the CSF IgG synthesis index (IgG-Syn) were related to the occurrence of CNS demyelination (p < 0.05). In a multivariate analysis, the IgG-Syn (OR = 1.017, 95% CI 1.003–1.031, p = 0.019) and CSF anti-myelin oligodendrocyte glycoprotein antibody (MOG.Ab) (OR = 12.059, 95% CI 1.141–127.458, p = 0.038) were independently associated with the onset of CNS demyelination. We also studied the possible pathogenesis of CNS demyelination. Immune reconstitution (the cell proportions of CD19+ B cells, CD3+ T cells, and CD4+ T cells); the counts of leucocytes, lymphocytes, monocytes, and platelets; and the levels of immunoglobulins A, G, and M 30, 60, and 90 days after HSCT showed no significant differences between CNS demyelination and no demyelination (p > 0.05). The probabilities of overall survival showed no significant differences between patients with and without demyelination (p > 0.05). Only four deaths in 30 patients, but bringing projected survival to less than 20%.We imply that IgG-Syn and CSF MOG. Ab may be associated with the onset of CNS demyelination during 2 weeks of neurological symptoms in patients with brain or spinal cord MRI abnormality. Immune reconstitution may not be the pathogenesis of CNS demyelination.

Keywords

Antibody CNS demyelination Haploidentical stem cell transplantation 

Notes

Acknowledgements

The authors thank the laboratory of neuroimmunology, Peking University First Hospital. American Journal Experts (www.journalexperts.com) provided editorial assistance to the authors during the preparation of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ende M, Ende FI (2006) Hematopoietic stem-cell transplantation. N Engl J Med 355:1070, 1070–1070, 1071PubMedGoogle Scholar
  2. 2.
    Wang Y, Liu QF, Xu LP et al (2015) Haploidentical vs identical-sibling transplant for AML in remission: a multicenter, prospective study. Blood 125:3956–3962CrossRefPubMedGoogle Scholar
  3. 3.
    Huang XJ, Zhu HH, Chang YJ et al (2012) The superiority of haploidentical related stem cell transplantation over chemotherapy alone as postremission treatment for patients with intermediate- or high-risk acute myeloid leukemia in first complete remission. Blood 119:5584–5590CrossRefPubMedGoogle Scholar
  4. 4.
    Solaro C, Murialdo A, Giunti D, Mancardi G, Uccelli A (2001) Central and peripheral nervous system complications following allogeneic bone marrow transplantation. Eur J Neurol 8:77–80CrossRefPubMedGoogle Scholar
  5. 5.
    Iguchi A, Kobayashi R, Yoshida M et al (1999) Neurological complications after stem cell transplantation in childhood. Bone Marrow Transplant 24:647–652CrossRefPubMedGoogle Scholar
  6. 6.
    Barba P, Piñana JL, Valcárcel D et al (2009) Early and late neurological complications after reduced-intensity conditioning allogeneic stem cell transplantation. Biol Blood Marrow Transplant 15:1439–1446CrossRefPubMedGoogle Scholar
  7. 7.
    Siegal D, Keller A, Xu W et al (2007) Central nervous system complications after allogeneic hematopoietic stem cell transplantation: incidence, manifestations, and clinical significance. Biol Blood Marrow Transplant 13:1369–1379CrossRefPubMedGoogle Scholar
  8. 8.
    Uckan D, Cetin M, Yigitkanli I et al (2005) Life-threatening neurological complications after bone marrow transplantation in children. Bone Marrow Transplant 35:71–76CrossRefPubMedGoogle Scholar
  9. 9.
    Pustavoitau A, Bhardwaj A, Stevens R (2011) Analytic review: neurological complications of transplantation. J Intensive Care Med 26:209–222CrossRefPubMedGoogle Scholar
  10. 10.
    Delios AM, Rosenblum M, Jakubowski AA, DeAngelis LM (2012) Central and peripheral nervous system immune mediated demyelinating disease after allogeneic hemopoietic stem cell transplantation for hematologic disease. J Neuro-Oncol 110:251–256CrossRefGoogle Scholar
  11. 11.
    Sakai M, Ohashi K, Ohta K et al (2006) Immune-mediated myelopathy following allogeneic stem cell transplantation. Int J Hematol 84:272–275CrossRefPubMedGoogle Scholar
  12. 12.
    Karam C, Mauermann ML, Johnston PB, Lahoria R, Engelstad JK, Dyck PJB (2014) Immune-mediated neuropathies following stem cell transplantation. J Neurol Neurosurg Psychiatry 85:638–642CrossRefPubMedGoogle Scholar
  13. 13.
    Liu D, Huang X, Liu K et al (2008) Haploidentical hematopoietic stem cell transplantation without in vitro T cell depletion for treatment of hematological malignancies in children. Biol Blood Marrow Transplant 14:469–477CrossRefPubMedGoogle Scholar
  14. 14.
    Lu DP, Dong L, Wu T (2006) Conditioning including antithymocyte globulin followed by unmanipulated HLA-mismatched/haploidentical blood and marrow transplantation can achieve comparable outcomes with HLA-identical sibling transplantation. Blood 107:3065–3073CrossRefPubMedGoogle Scholar
  15. 15.
    Zhang X, Fu H, Xu L et al (2011) Prolonged thrombocytopenia following allogeneic hematopoietic stem cell transplantation and its association with a reduction in ploidy and an immaturation of megakaryocytes. Biol Blood Marrow Transplant 17:274–280CrossRefPubMedGoogle Scholar
  16. 16.
    Thomas E, Storb R, Clift RA et al (1975) Bone-marrow transplantation (first of two parts). N Engl J Med 292:832–843CrossRefPubMedGoogle Scholar
  17. 17.
    Grauer O, Wolff D, Bertz H et al (2010) Neurological manifestations of chronic graft-versus-host disease after allogeneic haematopoietic stem cell transplantation: report from the Consensus Conference on Clinical Practice in chronic graft-versus-host disease. Brain 133:2852–2865CrossRefPubMedGoogle Scholar
  18. 18.
    Openshaw H, Slatkin NE, Parker PM, Forman SJ (1995) Immune-mediated myelopathy after allogeneic marrow transplantation. Bone Marrow Transplant 15:633–636PubMedGoogle Scholar
  19. 19.
    Matsuo Y, Kamezaki K, Takeishi S et al (2009) Encephalomyelitis mimicking multiple sclerosis associated with chronic graft-versus-host disease after allogeneic bone marrow transplantation. Intern Med 48:1453–1456CrossRefPubMedGoogle Scholar
  20. 20.
    Yamout B, Alroughani R, Al-Jumah M, Khoury S, Abouzeid N (2013) Consensus guidelines for the diagnosis and treatment of multiple sclerosis. Curr Med Res Opin 29(6):611–621CrossRefPubMedGoogle Scholar
  21. 21.
    Bluke, Karl G (2016) Thomas hematopoietic cell transplantation. In: Openshaw H (ed) Neurologic Complications of Hematopoietic Cell Transplantation. Wiley, Blackwell, pp 1287–1292Google Scholar
  22. 22.
    Polman CH, Reingold SC, Banwell B et al (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69:292–302CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lorenzoni PJ, Scola RH, Carsten AL et al (2007) Chronic inflammatory demyelinating polyradiculoneuropathy in chronic graft-versus-host disease following allogeneic hematopoietic stem cell transplantation: case report. Arq Neuropsiquiatr 65:700–704CrossRefPubMedGoogle Scholar
  24. 24.
    Voss M, Bischof F (2010) Recurrent myelitis after allogeneic stem cell transplantation. Report of two cases. BMC Neurol 10:76CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Su L, Ji B, Hu R, Lan X, Xia C (2014) Immune-mediated neuromuscular complications after haploidendtical hematopoietic stem cell transplantation. Chin Med J 127:2865–2867PubMedGoogle Scholar
  26. 26.
    Zhang XH (2013) Idiopathic inflammatory demyelinating diseases of the central nervous system in patients following allogeneic hematopoietic stem cell transplantation: a retrospective analysis of incidence, risk factors and survival. Chin Med J 126:1096–1102PubMedGoogle Scholar
  27. 27.
    Sostak P, Padovan CS, Eigenbrod S et al (2009) Cerebral angiitis in four patients with chronic GVHD. Bone Marrow Transplant 45:1181–1188CrossRefPubMedGoogle Scholar
  28. 28.
    Gratwohl A (2010) Thomas' hematopoietic cell transplantation. Eur J Haematol 84:95CrossRefPubMedGoogle Scholar
  29. 29.
    Zhang X, Zhang J, Han W et al (2017) Viral encephalitis after haplo-identical hematopoietic stem cell transplantation: causative viral spectrum, characteristics, and risk factors. Eur J Haematol 98:450–458CrossRefPubMedGoogle Scholar
  30. 30.
    Saito T, Saito O, Kawano T, Tamemoto H, Kusano E (2007) Elevation of serum adiponectin and CD146 levels in diabetic nephropathy. Diabetes Res Clin Pract 78:85–92CrossRefPubMedGoogle Scholar
  31. 31.
    Duan H, Luo Y, Hao H (2013) Soluble CD146 in cerebrospinal fluid of active multiple sclerosis. Neuroscience 235:16–26CrossRefPubMedGoogle Scholar
  32. 32.
    Bonnan M (2015) Intrathecal IgG synthesis: a resistant and valuable target for future multiple sclerosis treatments. Mult Scler Int 2015:1–15CrossRefGoogle Scholar
  33. 33.
    Reindl M, Linington C, Brehm U et al (1999) Antibodies against the myelin oligodendrocyte glycoprotein and the myelin basic protein in multiple sclerosis and other neurological diseases: a comparative study. Brain 122(Pt 11):2047–2056CrossRefPubMedGoogle Scholar
  34. 34.
    Tanaka M, Tanaka K (2014) Anti-MOG antibodies in adult patients with demyelinating disorders of the central nervous system. J Neuroimmunol 270:98–99CrossRefPubMedGoogle Scholar
  35. 35.
    Sellebjerg F, Jensen CV, Christiansen M (2000) Intrathecal IgG synthesis and autoantibody-secreting cells in multiple sclerosis. J Neuroimmunol 108:207–215CrossRefPubMedGoogle Scholar
  36. 36.
    Wang H, Munger KL, Reindl M et al (2008) Myelin oligodendrocyte glycoprotein antibodies and multiple sclerosis in healthy young adults. Neurology 71:1142–1146CrossRefPubMedGoogle Scholar
  37. 37.
    Reder AT, Oger JJ (2004) Anti-myelin oligodendrocyte glycoprotein antibodies in multiple sclerosis. Neurology 62:1922–1923CrossRefPubMedGoogle Scholar
  38. 38.
    Elovaara I, Apostolski S, van Doorn P et al (2008) EFNS guidelines for the use of intravenous immunoglobulin in treatment of neurological diseases. Eur J Neurol 15:893–908CrossRefPubMedGoogle Scholar
  39. 39.
    Waldman AT, Gorman MP, Rensel MR, Austin TE, Hertz DP, Kuntz NL (2011) Management of pediatric central nervous system demyelinating disorders: Consensus of United States Neurologists. J Child Neurol 26:675–682CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Probstel AK, Dornmair K, Bittner R et al (2011) Antibodies to MOG are transient in childhood acute disseminated encephalomyelitis. Neurology 77:580–588CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiao-hui Zhang
    • 1
    • 2
    • 3
  • Xin Zhao
    • 1
    • 2
    • 3
  • Chen-cong Wang
    • 1
    • 2
    • 3
  • Wei Han
    • 1
    • 2
    • 3
  • Huan Chen
    • 1
    • 2
    • 3
  • Yu-hong Chen
    • 1
    • 2
    • 3
  • Feng-rong Wang
    • 1
    • 2
    • 3
  • Jing-zhi Wang
    • 1
    • 2
    • 3
  • Yuan-yuan Zhang
    • 1
    • 2
    • 3
  • Xiao-dong Mo
    • 1
    • 2
    • 3
  • Yao Chen
    • 1
    • 2
    • 3
  • Yu Wang
    • 1
    • 2
    • 3
  • Hai-xia Fu
    • 1
    • 2
    • 3
  • Ying-jun Chang
    • 1
    • 2
    • 3
  • Lan-ping Xu
    • 1
    • 2
    • 3
  • Kai-yan Liu
    • 1
    • 2
    • 3
  • Xiao-jun Huang
    • 1
    • 2
    • 3
  1. 1.Peking University People’s Hospital, Peking University Institute of HematologyBeijingChina
  2. 2.Beijing Key Laboratory of Hematopoietic Stem Cell TransplantationBeijingChina
  3. 3.Collaborative Innovation Center of HematologyPeking UniversityBeijingChina

Personalised recommendations