Skip to main content
Log in

Meis1 is critical to the maintenance of human acute myeloid leukemia cells independent of MLL rearrangements

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Although the outcome of patients with acute myeloid leukemia (AML) has improved by optimized chemotherapy regimens and bone marrow transplantation, leukemia relapse remains one of the most challenging problems during therapy. Sustained existence of AML blasts is a fundamental determinant for the development of leukemia and resistance to therapy. Recent evidences suggest that Meis1 is tightly associated with the self-renewal capacity of normal hematopoietic stem cells. Meis1 was also found to be essential for the development of mixed lineage leukemia (MLL)-rearranged leukemia. Whether Meis1 functions independently of MLL abnormality in the context of leukemia is unclear. Herein, we identified a distinct expression pattern of Meis1 in patients with newly diagnosed AML without MLL abnormality. High levels of Meis1 expression were found in 64 of 95 (67.4%) AML patients; whereas, 31 of 95 (32.6%) patients showed dramatically lower levels of Meis1, compared with the median level of Meis1 in healthy donors. The whole cohort and subgroup analyses further demonstrated that high Meis1 expression levels were associated with a resistance to conventional chemotherapy, compared with the group with low Meis1 levels (P = 0.014 and P = 0.029, respectively). In vitro knockdown experiments highlighted a role of Meis1 in regulating maintenance and survival of human AML cells. These results implicate that Meis1 functions as an important regulator during the progression of human AML and could be a prognostic factor independent of MLL abnormality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Walter RB, Appelbaum FR, Tallman MS, Weiss NS, Larson RA, Estey EH (2010) Shortcomings in the clinical evaluation of new drugs: acute myeloid leukemia as paradigm. Blood 116(14):2420–2428. doi:10.1182/blood-2010-05-285387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lutz C, Hoang VT, Buss E, Ho AD (2013) Identifying leukemia stem cells—is it feasible and does it matter? Cancer Lett 338(1):10–14. doi:10.1016/j.canlet.2012.07.014

    Article  CAS  PubMed  Google Scholar 

  3. Huang XJ, Zhu HH, Chang YJ, Xu LP, Liu DH, Zhang XH, Jiang B, Jiang Q, Jiang H, Chen YH, Chen H, Han W, Liu KY, Wang Y (2012) The superiority of haploidentical related stem cell transplantation over chemotherapy alone as postremission treatment for patients with intermediate- or high-risk acute myeloid leukemia in first complete remission. Blood 119(23):5584–5590. doi:10.1182/blood-2011-11-389809

    Article  CAS  PubMed  Google Scholar 

  4. Orford KW, Scadden DT (2008) Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat Rev Genet 9(2):115–128. doi:10.1038/nrg2269

    Article  CAS  PubMed  Google Scholar 

  5. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  PubMed  Google Scholar 

  6. Look AT (1997) Oncogenic transcription factors in the human acute leukemias. Science 278(5340):1059–1064

    Article  CAS  PubMed  Google Scholar 

  7. Moskow JJ, Bullrich F, Huebner K, Daar IO, Buchberg AM (1995) Meis1, a PBX1-related homeobox gene involved in myeloid leukemia in BXH-2 mice. Mol Cell Biol 15(10):5434–5443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Moens CB, Selleri L (2006) Hox cofactors in vertebrate development. Dev Biol 291(2):193–206. doi:10.1016/j.ydbio.2005.10.032

    Article  CAS  PubMed  Google Scholar 

  9. Ariki R, Morikawa S, Mabuchi Y, Suzuki S, Nakatake M, Yoshioka K, Hidano S, Nakauchi H, Matsuzaki Y, Nakamura T, Goitsuka R (2014) Homeodomain transcription factor Meis1 is a critical regulator of adult bone marrow hematopoiesis. PLoS One 9(2):e87646. doi:10.1371/journal.pone.0087646

    Article  PubMed  PubMed Central  Google Scholar 

  10. Unnisa Z, Clark JP, Roychoudhury J, Thomas E, Tessarollo L, Copeland NG, Jenkins NA, Grimes HL, Kumar AR (2012) Meis1 preserves hematopoietic stem cells in mice by limiting oxidative stress. Blood 120(25):4973–4981. doi:10.1182/blood-2012-06-435800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kocabas F, Zheng J, Thet S, Copeland NG, Jenkins NA, DeBerardinis RJ, Zhang C, Sadek HA (2012) Meis1 regulates the metabolic phenotype and oxidant defense of hematopoietic stem cells. Blood 120(25):4963–4972. doi:10.1182/blood-2012-05-432260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kumar AR, Li Q, Hudson WA, Chen W, Sam T, Yao Q, Lund EA, Wu B, Kowal BJ, Kersey JH (2009) A role for MEIS1 in MLL-fusion gene leukemia. Blood 113(8):1756–1758. doi:10.1182/blood-2008-06-163287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wong P, Iwasaki M, Somervaille TC, So CW, Cleary ML (2007) Meis1 is an essential and rate-limiting regulator of MLL leukemia stem cell potential. Genes Dev 21(21):2762–2774. doi:10.1101/gad.1602107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kumar AR, Sarver AL, Wu B, Kersey JH (2010) Meis1 maintains stemness signature in MLL-AF9 leukemia. Blood 115(17):3642–3643. doi:10.1182/blood-2010-01-264564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Quentmeier H, Dirks WG, Macleod RAF, Reinhardt J, Zaborski M, Drexler HG (2004) Expression of HOX genes in acute leukemia cell lines with and without MLL translocations. Leukemia & Lymphoma 45(3):567–574. doi:10.1080/10428190310001609942

    Article  CAS  Google Scholar 

  16. Afonja O, Smith JE Jr, Cheng DM, Goldenberg AS, Amorosi E, Shimamoto T, Nakamura S, Ohyashiki K, Ohyashiki J, Toyama K, Takeshita K (2000) MEIS1 and HOXA7 genes in human acute myeloid leukemia. Leuk Res 24(10):849–855

    Article  CAS  PubMed  Google Scholar 

  17. Mahmoud AI, Kocabas F, Muralidhar SA, Kimura W, Koura AS, Thet S, Porrello ER, Sadek HA (2013) Meis1 regulates postnatal cardiomyocyte cell cycle arrest. Nature 497(7448):249–253. doi:10.1038/nature12054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zangenberg M, Grubach L, Aggerholm A, Silkjaer T, Juhl-Christensen C, Nyvold CG, Kjeldsen E, Ommen HB, Hokland P (2009) The combined expression of HOXA4 and MEIS1 is an independent prognostic factor in patients with AML. Eur J Haematol 83(5):439–448. doi:10.1111/j.1600-0609.2009.01309.x

    Article  CAS  PubMed  Google Scholar 

  19. Lozzio CB, Lozzio BB (1975) Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood 45(3):321–3344

    CAS  PubMed  Google Scholar 

  20. Ferrara F, Schiffer CA (2013) Acute myeloid leukaemia in adults. Lancet 381(9865):484–495. doi:10.1016/S0140-6736(12)61727-9

    Article  PubMed  Google Scholar 

  21. Heuser M, Yun H, Berg T, Yung E, Argiropoulos B, Kuchenbauer F, Park G, Hamwi I, Palmqvist L, Lai CK, Leung M, Lin G, Chaturvedi A, Thakur BK, Iwasaki M, Bilenky M, Thiessen N, Robertson G, Hirst M, Kent D, Wilson NK, Gottgens B, Eaves C, Cleary ML, Marra M, Ganser A, Humphries RK (2011) Cell of origin in AML: susceptibility to MN1-induced transformation is regulated by the Meis1/AbdB-like Hox protein complex. Cancer Cell 20(1):39–52. doi:10.1016/j.ccr.2011.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lawrence HJ, Rozenfeld S, Cruz C, Matsukuma K, Kwong A, Komuves L, Buchberg AM, Largman C (1999) Frequent co-expression of the HOXA9 and MEIS1 homeobox genes in human myeloid leukemias. Leukemia 13(12):1993–1999

    Article  CAS  PubMed  Google Scholar 

  23. Argiropoulos B, Yung E, Xiang P, Lo CY, Kuchenbauer F, Palmqvist L, Reindl C, Heuser M, Sekulovic S, Rosten P, Muranyi A, Goh SL, Featherstone M, Humphries RK (2010) Linkage of the potent leukemogenic activity of Meis1 to cell-cycle entry and transcriptional regulation of cyclin D3. Blood 115(20):4071–4082. doi:10.1182/blood-2009-06-225573

    Article  CAS  PubMed  Google Scholar 

  24. Bessa J, Tavares MJ, Santos J, Kikuta H, Laplante M, Becker TS, Gomez-Skarmeta JL, Casares F (2008) Meis1 regulates cyclin D1 and c-myc expression, and controls the proliferation of the multipotent cells in the early developing zebrafish eye. Development 135(5):799–803. doi:10.1242/dev.011932

    Article  CAS  PubMed  Google Scholar 

  25. Riddell J, Gazit R, Garrison BS, Guo G, Saadatpour A, Mandal PK, Ebina W, Volchkov P, Yuan GC, Orkin SH, Rossi DJ (2014) Reprogramming committed murine blood cells to induced hematopoietic stem cells with defined factors. Cell 157(3):549–564. doi:10.1016/j.cell.2014.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wahlestedt M, Bryder D (2014) Induced hematopoietic stem cells: unlocking restrictions in lineage potential and self-renewal. Cell Stem Cell 14(5):555–556. doi:10.1016/j.stem.2014.04.008

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study is supported by the Key Program of National Natural Science Foundation of China (Grant No. 81230013) and Scientific Research Foundation for Returned Scholars, Ministry of Education of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Jun Huang.

Ethics declarations

All procedures were in accordance with the ethical standards of the responsible committee on human experimentation and with the Helsinki Declaration of 1975, as revised in 2008. The study protocols have been approved by the Ethical Committee of Peking University Institute of Hematology. All patients signed the consent forms.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Qin, YZ., Yang, S. et al. Meis1 is critical to the maintenance of human acute myeloid leukemia cells independent of MLL rearrangements. Ann Hematol 96, 567–574 (2017). https://doi.org/10.1007/s00277-016-2913-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-016-2913-6

Keywords

Navigation