Annals of Hematology

, Volume 96, Issue 4, pp 665–680 | Cite as

Comprehensive assessment of peripheral blood TCRβ repertoire in infectious mononucleosis and chronic active EBV infection patients

  • Shenglin Liu
  • Qian Zhang
  • Dongli Huang
  • Wenli Zhang
  • Fengluan Zhong
  • Jia Feng
  • Xueru Chen
  • Qingxiang Meng
  • Xiaofan Chen
  • Wei Zhang
  • Hongyu Zhang
Original Article


Epstein-Barr virus (EBV) primary infection is usually asymptomatic, but it sometimes progresses to infectious mononucleosis (IM). Occasionally, some people develop chronic active EBV infection (CAEBV) with underlying immunodeficiency, which belongs to a continuous spectrum of EBV-associated lymphoproliferative disorders (EBV+ LPD) with heterogeneous clinical presentations and high mortality. It has been well established that T cell-mediated immune response plays a critical role in the disease evolution of EBV infection. Recently, high-throughput sequencing of the hypervariable complementarity-determining region 3 (CDR3) segments of the T cell receptor (T cell receptor β (TCRβ)) has emerged as a sensitive approach to assess the T cell repertoire. In this study, we fully characterized the diversity of peripheral blood TCRβ repertoire in IM (n = 6) and CAEBV patients (n = 5) and EBV-seropositive controls (n = 5). Compared with the healthy EBV-seropositive controls, both IM and CAEBV patients demonstrate a significant decrease in peripheral blood TCRβ repertoire diversity, basically, including narrowed repertoire breadth, highly expanded clones, and skewed CDR3 length distribution. However, there is no significant difference between IM and CAEBV patients. Furthermore, we observed some disease-related preferences in TRBV/TRBJ usage and combinations, as well as lots of T cell clones shared by different groups (unique or overlapped) involved in public T cell responses, which provide more detailed insights into the divergent disease evolution.


Epstein-Barr virus (EBV) Infectious mononucleosis (IM) Chronic active EBV infection (CAEBV) T cell receptor (TCRβ) repertoire complementarity-determining region 3 (CDR3) 



Epstein-Barr virus


Infectious mononucleosis


Chronic active EBV infection


T cell receptor β


Hypervariable complementarity-determining region 3


EBV-associated lymphoproliferative disorders


Cytotoxic T lymphocytes



This study was supported by the National Natural Science Foundation of China (grant no. 81371737) and the Basic Research Program of Shenzhen Innovation Council of China (grant no. JCYJ20130402114702128).

Compliance with ethical standards

All procedures were performed according to the ethical standards of the Declaration of Helsinki involving human subjects in medical research. All participants gave written informed consent.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

277_2016_2911_Fig10_ESM.gif (27 kb)
Supplementary Figure 1.

Comparison of CDR3 length distribution in IM, CAEBV patients and controls. To the compare Gaussian fitting value (R2) between each group by Mann–Whitney U test. R2 represents the data more conform to normal distribution when closer to 1. P values less than 0.05 were considered significant. The median line and average value of each index (mean±SD) were presented. (GIF 27 kb)

277_2016_2911_MOESM1_ESM.tif (367 kb)
High resolution image (TIFF 367 kb)
277_2016_2911_Fig11_ESM.gif (99 kb)
Supplementary Figure 2.

The distribution of TRBV gene usage frequency. The X-axis depicts each TRBV gene and theY-axis depicts the percentage of each TRBV gene type. Green: controls (n=5); blue: IM (n=6); red: CAEBV (n=5). (GIF 99 kb)

277_2016_2911_MOESM2_ESM.tif (1.7 mb)
High resolution image (TIFF 1770 kb)
277_2016_2911_Fig12_ESM.gif (205 kb)
Supplementary Figure 3.

The distribution of TRBJ gene usage frequency. The X-axis depicts each TRBJ gene and the Y-axis depicts the percentage of each TRBJ subtype. Green: controls (n=5); blue: IM (n=6); red: CAEBV (n=5). (GIF 204 kb)

277_2016_2911_MOESM3_ESM.tif (2.6 mb)
High resolution image (TIFF 2701 kb)
277_2016_2911_Fig13_ESM.gif (180 kb)
Supplementary Figure 4.

The distribution of TRBV/TRBJ combination frequency. Each bubble represent aTRBV/TRBJ combination.The area of each bubble corresponds to the relative size ofTRBV-TRBJ combination frequency. Colors represent the different TRBV/TRBJ combination. (GIF 179 kb)

277_2016_2911_MOESM4_ESM.tif (4.8 mb)
High resolution image (TIFF 4910 kb)
277_2016_2911_Fig14_ESM.gif (596 kb)
Supplementary Figure 5.

Immunohistochemical staining of bone marrow (BM) or lymph node cells obtained CAEBV patients. (A) ZHY131# patient: bone marrow samples were stained with anti-CD56 antibody(positive: brown cytosol, open arrow) and were in situ hybridized of EBER(positive: purple, open arrow), respectively. (B) ZHY205# patient: bone marrow samples were stained with anti-CD3 antibody(positive: brown cytosol, open arrow) and were in situ hybridized of EBER(positive: purple, open arrow) , respectively. (C) ZHY365# patient: bone marrow samples were stained with anti-CD3 antibody(positive: brown cytosol, open arrow) and were in situ hybridized of EBER(positive: purple, open arrow) , respectively. (D) ZHY328# patient: bone marrow samples were stained with anti-CD3 antibody(positive: brown cytosol, open arrow) and were in situ hybridized of EBER(positive: purple, open arrow) , respectively. (E) ZHY328# patient: lymph node samples were double stained with anti-CD3 antibody and in situ hybridization of EBER(double positive: open arrow). (GIF 596 kb)

277_2016_2911_MOESM5_ESM.tif (8 mb)
High resolution image (TIFF 8217 kb)
277_2016_2911_MOESM6_ESM.doc (49 kb)
Supplementary Table 1 (DOC 49 kb)
277_2016_2911_MOESM7_ESM.doc (34 kb)
Supplementary Table 2 (DOC 34 kb)
277_2016_2911_MOESM8_ESM.doc (34 kb)
Supplementary Table 3 (DOC 34 kb)
277_2016_2911_MOESM9_ESM.doc (202 kb)
Supplementary Table 4 (DOC 201 kb)
277_2016_2911_MOESM10_ESM.doc (350 kb)
Supplementary Table 5 (DOC 350 kb)


  1. 1.
    Cohen JI (2000) Epstein–Barr virus infection. N Engl J Med 343(7):481–492. doi: 10.1056/NEJM200008173430707 CrossRefPubMedGoogle Scholar
  2. 2.
    Balfour HH Jr, Dunmire SK, Hogquist KA (2015) Infectious mononucleosis. Clin Transl Immunology 4(2):e33. doi: 10.1038/cti.2015.1 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Balfour HH Jr, Sifakis F, Sliman JA, Knight JA, Schmeling DO, Thomas W (2013) Age-specific prevalence of Epstein-Barr virus infection among individuals aged 6-19 years in the United States and factors affecting its acquisition. J Infect Dis 208(8):1286–1293. doi: 10.1093/infdis/jit321 CrossRefPubMedGoogle Scholar
  4. 4.
    Krabbe S, Hesse J, Uldall P (1981) Primary Epstein-Barr virus infection in early childhood. Arch Dis Child 56(1):49–52CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ohshima K, Kimura H, Yoshino T, Kim CW, Ko YH, Lee SS, Peh SC, Chan JK, Group CS (2008) Proposed categorization of pathological states of EBV-associated T/natural killer-cell lymphoproliferative disorder (LPD) in children and young adults: overlap with chronic active EBV infection and infantile fulminant EBV T-LPD. Pathol Int 58(4):209–217. doi: 10.1111/j.1440-1827.2008.02213.x CrossRefPubMedGoogle Scholar
  6. 6.
    Kimura H (2006) Pathogenesis of chronic active Epstein-Barr virus infection: is this an infectious disease, lymphoproliferative disorder, or immunodeficiency? Rev Med Virol 16(4):251–261. doi: 10.1002/rmv.505 CrossRefPubMedGoogle Scholar
  7. 7.
    Kimura H, Morishima T, Kanegane H, Ohga S, Hoshino Y, Maeda A, Imai S, Okano M, Morio T, Yokota S, Tsuchiya S, Yachie A, Imashuku S, Kawa K, Wakiguchi H, Japanese Association for Research on Epstein-Barr V, Related D (2003) Prognostic factors for chronic active Epstein-Barr virus infection. J Infect Dis 187(4):527–533. doi: 10.1086/367988 CrossRefPubMedGoogle Scholar
  8. 8.
    Kimura H, Hoshino Y, Kanegane H, Tsuge I, Okamura T, Kawa K, Morishima T (2001) Clinical and virologic characteristics of chronic active Epstein-Barr virus infection. Blood 98(2):280–286CrossRefPubMedGoogle Scholar
  9. 9.
    Straus SE (1988) The chronic mononucleosis syndrome. J Infect Dis 157(3):405–412CrossRefPubMedGoogle Scholar
  10. 10.
    Kuzushima K, Hayashi N, Kudoh A, Akatsuka Y, Tsujimura K, Morishima Y, Tsurumi T (2003) Tetramer-assisted identification and characterization of epitopes recognized by HLA A*2402-restricted Epstein-Barr virus-specific CD8+ T cells. Blood 101(4):1460–1468. doi: 10.1182/blood-2002-04-1240 CrossRefPubMedGoogle Scholar
  11. 11.
    Sugaya N, Kimura H, Hara S, Hoshino Y, Kojima S, Morishima T, Tsurumi T, Kuzushima K (2004) Quantitative analysis of Epstein-Barr virus (EBV)-specific CD8+ T cells in patients with chronic active EBV infection. J Infect Dis 190(5):985–988. doi: 10.1086/423285 CrossRefPubMedGoogle Scholar
  12. 12.
    Park S, Ko YH (2014) Epstein-Barr virus-associated T/natural killer-cell lymphoproliferative disorders. J Dermatol 41(1):29–39. doi: 10.1111/1346-8138.12322 CrossRefPubMedGoogle Scholar
  13. 13.
    Woodsworth DJ, Castellarin M, Holt RA (2013) Sequence analysis of T-cell repertoires in health and disease. Genome medicine 5(10):98. doi: 10.1186/gm502 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Iwatani Y, Watanabe M (1998) The maternal immune system in health and disease. Current opinion in obstetrics & gynecology 10(6):453–458CrossRefGoogle Scholar
  15. 15.
    Hafler DA, Duby AD, Lee SJ, Benjamin D, Seidman JG, Weiner HL (1988) Oligoclonal T lymphocytes in the cerebrospinal fluid of patients with multiple sclerosis. J Exp Med 167(4):1313–1322CrossRefPubMedGoogle Scholar
  16. 16.
    Matsumoto Y, Yoon WK, Jee Y, Fujihara K, Misu T, Sato S, Nakashima I, Itoyama Y (2003) Complementarity-determining region 3 spectratyping analysis of the TCR repertoire in multiple sclerosis. J Immunol 170(9):4846–4853. doi: 10.4049/jimmunol.170.9.4846 CrossRefPubMedGoogle Scholar
  17. 17.
    Boyd SD, Marshall EL, Merker JD, Maniar JM, Zhang LN, Sahaf B, Jones CD, Simen BB, Hanczaruk B, Nguyen KD, Nadeau KC, Egholm M, Miklos DB, Zehnder JL, Fire AZ (2009) Measurement and clinical monitoring of human lymphocyte clonality by massively parallel VDJ pyrosequencing. Sci Transl Med 1(12):12ra23CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Jacobsen M, Cepok S, Quak E, Happel M, Gaber R, Ziegler A, Schock S, Oertel WH, Sommer N, Hemmer B (2002) Oligoclonal expansion of memory CD8+ T cells in cerebrospinal fluid from multiple sclerosis patients. Brain 125(Pt 3):538–550CrossRefPubMedGoogle Scholar
  19. 19.
    Lima M, Teixeira MA, Queirós ML, Santos AH, Gonçalves C, Correia J, Farinha F, Mendonça F, Soares JMN, Almeida J, Orfão A, Justiça B (2003) Immunophenotype and TCR-Vβ repertoire of peripheral blood T-cells in acute infectious mononucleosis. Blood Cell Mol Dis 30(1):1–12. doi: 10.1016/s1079-9796(03)00014-7 CrossRefGoogle Scholar
  20. 20.
    Ohga S, Kimura N, Takada H, Nagano M, Ohshima K, Nomura A, Muraoka K, Take H, Yamamori S, Hara T (1999) Restricted diversification of T-cells in chronic active Epstein-Barr virus infection: potential inclination to T-lymphoproliferative disease. Am J Hematol 61(1):26–33CrossRefPubMedGoogle Scholar
  21. 21.
    Gao LW, Xie ZD, Liu YY, Wang Y, Shen KL (2011) Epidemiologic and clinical characteristics of infectious mononucleosis associated with Epstein-Barr virus infection in children in Beijing, China. World J Pediatr 7(1):45–49. doi: 10.1007/s12519-011-0244-1 CrossRefPubMedGoogle Scholar
  22. 22.
    Li Z, Liu G, Tong Y, Zhang M, Xu Y, Qin L, Wang Z, Chen X, He J (2015) Comprehensive analysis of the T-cell receptor beta chain gene in rhesus monkey by high throughput sequencing. Sci Rep 5:10092. doi: 10.1038/srep10092 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Robins HS, Campregher PV, Srivastava SK, Wacher A, Turtle CJ, Kahsai O, Riddell SR, Warren EH, Carlson CS (2009) Comprehensive assessment of T-cell receptor beta-chain diversity in alphabeta T cells. Blood 114(19):4099–4107. doi: 10.1182/blood-2009-04-217604 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Wu J, Liu D, Tu W, Song W, Zhao X (2015) T-cell receptor diversity is selectively skewed in T-cell populations of patients with Wiskott-Aldrich syndrome. J Allergy Clin Immunol 135(1):209–216. doi: 10.1016/j.jaci.2014.06.025 CrossRefPubMedGoogle Scholar
  25. 25.
    Stewart JJ, Lee CY, Ibrahim S, Watts P, Shlomchik M, Weigert M, Litwin S (1997) A Shannon entropy analysis of immunoglobulin and T cell receptor. Mol Immunol 34(15):1067–1082CrossRefPubMedGoogle Scholar
  26. 26.
    Giudicelli V, Chaume D, Lefranc MP (2005) IMGT/GENE-DB: a comprehensive database for human and mouse immunoglobulin and T cell receptor genes. Nucleic Acids Res 33(Database issue):D256–D261. doi: 10.1093/nar/gki010 CrossRefPubMedGoogle Scholar
  27. 27.
    Li H, Ye C, Ji G, Han J (2012) Determinants of public T cell responses. Cell Res 22(1):33–42. doi: 10.1038/cr.2012.1 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lossius A, Johansen JN, Vartdal F, Robins H, Jurate Saltyte B, Holmoy T, Olweus J (2014) High-throughput sequencing of TCR repertoires in multiple sclerosis reveals intrathecal enrichment of EBV-reactive CD8+ T cells. Eur J Immunol 44(11):3439–3452. doi: 10.1002/eji.201444662 CrossRefPubMedGoogle Scholar
  29. 29.
    Rickinson AB, Long HM, Palendira U, Münz C, Hislop AD (2014) Cellular immune controls over Epstein-Barr virus infection: new lessons from the clinic and the laboratory. Trends Immunol 35(4):159–169. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  30. 30.
    Epstein-Barr virus-associated lymphoproliferative disorders*.Google Scholar
  31. 31.
    Grywalska E, Markowicz J, Grabarczyk P, Pasiarski M, Rolinski J (2013) Epstein-Barr virus-associated lymphoproliferative disorders. Postepy Hig Med Dosw 67:481–490CrossRefGoogle Scholar
  32. 32.
    Silins SL, Sherritt MA, Silleri JM, Cross SM, Elliott SL, Bharadwaj M, Le TT, Morrison LE, Khanna R, Moss DJ, Suhrbier A, Misko IS (2001) Asymptomatic primary Epstein-Barr virus infection occurs in the absence of blood T-cell repertoire perturbations despite high levels of systemic viral load. Blood 98(13):3739–3744CrossRefPubMedGoogle Scholar
  33. 33.
    Misko IS, Cross SM, Khanna R, Elliott SL, Schmidt C, Pye SJ, Silins SL (1999) Crossreactive recognition of viral, self, and bacterial peptide ligands by human class I-restricted cytotoxic T lymphocyte clonotypes: implications for molecular mimicry in autoimmune disease. Proc Natl Acad Sci U S A 96(5):2279–2284CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Tomkinson BE, Wagner DK, Nelson DL, Sullivan JL (1987) Activated lymphocytes during acute Epstein-Barr virus infection. J Immunol 139(11):3802–3807PubMedGoogle Scholar
  35. 35.
    Callan MF, Tan L, Annels N, Ogg GS, Wilson JD, O’Callaghan CA, Steven N, McMichael AJ, Rickinson AB (1998) Direct visualization of antigen-specific CD8+ T cells during the primary immune response to Epstein-Barr virus in vivo. J Exp Med 187(9):1395–1402CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kimura H, Tsuge I, Imai S, Yamamoto M, Kuzushima K, Osato T, Morishima T (1995) Intact antigen presentation for Epstein-Barr virus (EBV)-specific CTL by a lymphoblastoid cell line established from a patient with chronic active EBV infection. Med Microbiol Immunol 184(2):63–68CrossRefPubMedGoogle Scholar
  37. 37.
    Tsuge I, Morishima T, Kimura H, Kuzushima K, Matsuoka H (2001) Impaired cytotoxic T lymphocyte response to Epstein-Barr virus-infected NK cells in patients with severe chronic active EBV infection. J Med Virol 64(2):141–148CrossRefPubMedGoogle Scholar
  38. 38.
    van Dongen JJ, Langerak AW, Brüggemann M, Evans PA, Hummel M, Lavender FL, Delabesse E, Davi F, Schuuring E, García-Sanz R, van Krieken JH, Droese J, González D, Bastard C, White HE, Spaargaren M, González M, Parreira A, Smith JL, Morgan GJ, Kneba M, Macintyre EA (2003) Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 17(12):2257–2317. doi: 10.1038/sj.leu.2403202 CrossRefPubMedGoogle Scholar
  39. 39.
    Ahn JS, Rew SY, Shin MG, Kim HR, Yang DH, Cho D, Kim SH, Bae SY, Lee SR, Kim YK, Kim HJ, Lee JJ (2010) Clinical significance of clonality and Epstein-Barr virus infection in adult patients with hemophagocytic lymphohistiocytosis. Am J Hematol 85(9):719–722. doi: 10.1002/ajh.21795 CrossRefPubMedGoogle Scholar
  40. 40.
    Langerak AW, Molina TJ, Lavender FL, Pearson D, Flohr T, Sambade C, Schuuring E, Al Saati T, van Dongen JJ, van Krieken JH (2007) Polymerase chain reaction-based clonality testing in tissue samples with reactive lymphoproliferations: usefulness and pitfalls. A report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 21(2):222–229. doi: 10.1038/sj.leu.2404482 CrossRefPubMedGoogle Scholar
  41. 41.
    Venturi V, Chin HY, Asher TE, Ladell K, Scheinberg P, Bornstein E, van Bockel D, Kelleher AD, Douek DC, Price DA, Davenport MP (2008) TCR beta-chain sharing in human CD8+ T cell responses to cytomegalovirus and EBV. J Immunol 181(11):7853–7862CrossRefPubMedGoogle Scholar
  42. 42.
    Miconnet I, Marrau A, Farina A, Taffe P, Vigano S, Harari A, Pantaleo G (2011) Large TCR diversity of virus-specific CD8 T cells provides the mechanistic basis for massive TCR renewal after antigen exposure. J Immunol 186(12):7039–7049. doi: 10.4049/jimmunol.1003309 CrossRefPubMedGoogle Scholar
  43. 43.
    Argaet VP, Schmidt CW, Burrows SR, Silins SL, Kurilla MG, Doolan DL, Suhrbier A, Moss DJ, Kieff E, Sculley TB, Misko IS (1994) Dominant selection of an invariant T cell antigen receptor in response to persistent infection by Epstein-Barr virus. J Exp Med 180(6):2335–2340CrossRefPubMedGoogle Scholar
  44. 44.
    Koning D, Costa AI, Hoof I, Miles JJ, Nanlohy NM, Ladell K, Matthews KK, Venturi V, Schellens IM, Borghans JA, Kesmir C, Price DA, van Baarle D (2013) CD8+ TCR repertoire formation is guided primarily by the peptide component of the antigenic complex. J Immunol 190(3):931–939. doi: 10.4049/jimmunol.1202466 CrossRefPubMedGoogle Scholar
  45. 45.
    Miles JJ, Elhassen D, Borg NA, Silins SL, Tynan FE, Burrows JM, Purcell AW, Kjer-Nielsen L, Rossjohn J, Burrows SR, McCluskey J (2005) CTL recognition of a bulged viral peptide involves biased TCR selection. J Immunol 175(6):3826–3834CrossRefPubMedGoogle Scholar
  46. 46.
    Miles JJ, Borg NA, Brennan RM, Tynan FE, Kjer-Nielsen L, Silins SL, Bell MJ, Burrows JM, McCluskey J, Rossjohn J, Burrows SR (2006) TCR alpha genes direct MHC restriction in the potent human T cell response to a class I-bound viral epitope. J Immunol 177(10):6804–6814CrossRefPubMedGoogle Scholar
  47. 47.
    Miles JJ, Silins SL, Brooks AG, Davis JE, Misko I, Burrows SR (2005) T-cell grit: large clonal expansions of virus-specific CD8+ T cells can dominate in the peripheral circulation for at least 18 years. Blood 106(13):4412–4413. doi: 10.1182/blood-2005-06-2261 CrossRefPubMedGoogle Scholar
  48. 48.
    Neller MA, Burrows JM, Rist MJ, Miles JJ, Burrows SR (2013) High frequency of herpesvirus-specific clonotypes in the human T cell repertoire can remain stable over decades with minimal turnover. J Virol 87(1):697–700. doi: 10.1128/jvi.02180-12 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Roth JR, Kugelberg E, Reams AB, Kofoid E, Andersson DI (2006) Origin of mutations under selection: the adaptive mutation controversy. Annu Rev Microbiol 60:477–501. doi: 10.1146/annurev.micro.60.080805.142045 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Shenglin Liu
    • 1
  • Qian Zhang
    • 2
  • Dongli Huang
    • 3
  • Wenli Zhang
    • 2
  • Fengluan Zhong
    • 2
  • Jia Feng
    • 2
  • Xueru Chen
    • 2
  • Qingxiang Meng
    • 2
  • Xiaofan Chen
    • 1
  • Wei Zhang
    • 1
  • Hongyu Zhang
    • 2
  1. 1.Biomedical Research InstituteShenzhen Peking University–The Hong Kong University of Science and Technology Medical CenterShenzhenChina
  2. 2.Department of HematologyPeking University Shenzhen HospitalShenzhenChina
  3. 3.Department of General SurgeryChangyi People’s HospitalChangyiChina

Personalised recommendations