Skip to main content

Advertisement

Log in

GM-CSF treatment is not effective in congenital neutropenia patients due to its inability to activate NAMPT signaling

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Severe congenital neutropenia (CN) is a bone marrow failure syndrome characterized by an absolute neutrophil count (ANC) below 500 cells/μL and recurrent, life-threatening bacterial infections. Treatment with granulocyte colony-stimulating factor (G-CSF) increases the ANC in the majority of CN patients. In contrary, granulocyte-monocyte colony-stimulating factor (GM-CSF) fails to increase neutrophil numbers in CN patients in vitro and in vivo, suggesting specific defects in signaling pathways downstream of GM-CSF receptor. Recently, we detected that G-CSF induces granulopoiesis in CN patients by hyperactivation of nicotinamide phosphoribosyl transferase (NAMPT)/Sirtuin 1 signaling in myeloid cells. Here, we demonstrated that, in contrast to G-CSF, GM-CSF failed to induce NAMPT-dependent granulopoiesis in CN patients. We further identified NAMPT signaling as an essential downstream effector of the GM-CSF pathway in myelopoiesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Doulatov S, Notta F, Laurenti E, Dick JE (2012) Hematopoiesis: a human perspective. Cell Stem Cell 10(2):120–136

    Article  CAS  PubMed  Google Scholar 

  2. Orkin SH, Zon LI (2008) Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132(4):631–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tenen DG (2003) Disruption of differentiation in human cancer: AML shows the way. Nat Rev Cancer 3(2):89–101

    Article  CAS  PubMed  Google Scholar 

  4. Lotem J, Sachs L (2002) Cytokine control of developmental programs in normal hematopoiesis and leukemia. Oncogene 21(21):3284–3294

    Article  CAS  PubMed  Google Scholar 

  5. Robb L (2007) Cytokine receptors and hematopoietic differentiation. Oncogene 26(47):6715–6723

    Article  CAS  PubMed  Google Scholar 

  6. Zhu J, Emerson SG (2002) Hematopoietic cytokines, transcription factors and lineage commitment. Oncogene 21(21):3295–3313

    Article  CAS  PubMed  Google Scholar 

  7. Donahue RE, Seehra J, Metzger M et al (1988) Human IL-3 and GM-CSF act synergistically in stimulating hematopoiesis in primates. Science 241(4874):1820–1823

    Article  CAS  PubMed  Google Scholar 

  8. McNiece I, Andrews R, Stewart M, Clark S, Boone T, Quesenberry P (1989) Action of interleukin-3, G-CSF, and GM-CSF on highly enriched human hematopoietic progenitor cells: synergistic interaction of GM-CSF plus G-CSF. Blood 74(1):110–114

    CAS  PubMed  Google Scholar 

  9. Souza LM, Boone TC, Gabrilove J et al (1986) Recombinant human granulocyte colonystimulating factor: effects on normal and leukemic myeloid cells. Science 232(4746):61–65

    Article  CAS  PubMed  Google Scholar 

  10. Welte K, Bonilla MA, Gillio AP et al (1987) Recombinant human granulocyte colonystimulating factor. Effects on hematopoiesis in normal and cyclophosphamide-treated primates. J Exp Med 165(4):941–948

    Article  CAS  PubMed  Google Scholar 

  11. Jacobsen SE, Okkenhaug C, Veiby OP, Caput D, Ferrara P, Minty A (1994) Interleukin 13: novel role in direct regulation of proliferation and differentiation of primitive hematopoietic progenitor cells. J Exp Med 180(1):75–82

    Article  CAS  PubMed  Google Scholar 

  12. McKenzie AN, Culpepper JA, de Waal MR et al (1993) Interleukin 13, a T-cell-derived cytokine that regulates human monocyte and B-cell function. PNAS 90(8):3735–3739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rioux JD, Daly MJ, Silverberg MS et al (2001) Genetic variation in the 5q31 cytokine gene cluster confers susceptibility to Crohn disease. Nat Genet 29(2):223–228

    Article  CAS  PubMed  Google Scholar 

  14. Jacquier V, Estelle J, Schmaltz-Panneau B, et al. (2015) Genome-wide immunity studies in the rabbit: transcriptome variations in peripheral blood mononuclear cells after in vitro stimulation by LPS or PMA-Ionomycin. BMC genomics.16–26

  15. Yamaguchi R, Yamamoto T, Sakamoto A, et al. Mechanism of interleukin-13 production by granulocyte-macrophage colony-stimulating factor-dependent macrophages via proteaseactivated receptor-2. Blood cells Mol. Dis 2015;55(1):21–26.

  16. Dufour C, Miano M, Fioredda F (2016) Old and new faces of neutropenia in children. Haematologica 101(7):789–791

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dale DC, Person RE, Bolyard AA et al (2000) Mutations in the gene encoding neutrophil elastase in congenital and cyclic neutropenia. Blood 96(7):2317–2322

    CAS  PubMed  Google Scholar 

  18. Klein C, Grudzien M, Appaswamy G et al (2007) HAX1 deficiency causes autosomal recessive severe congenital neutropenia (Kostmann disease). Nat Genet 39(1):86–92

    Article  CAS  PubMed  Google Scholar 

  19. Boztug K, Appaswamy G, Ashikov A et al (2009) A syndrome with congenital neutropenia and mutations in G6PC3. NEJM 360(1):32–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Devriendt K, Kim AS, Mathijs G et al (2001) Constitutively activating mutation in WASP causes X-linked severe congenital neutropenia. Nat Genet 27(3):313–317

    Article  CAS  PubMed  Google Scholar 

  21. Klimiankou M, Klimenkova O, Uenalan M et al (2015) GM-CSF stimulates granulopoiesis in a congenital neutropenia patient with loss-of-function biallelic heterozygous CSF3R mutations. Blood 126(15):1865–1867

    Article  CAS  PubMed  Google Scholar 

  22. Schroten H, Wendel U, Burdach S et al (1991) Colony-stimulating factors for neutropenia in glycogen storage disease Ib. Lancet 337(8743):736–737

    Article  CAS  PubMed  Google Scholar 

  23. Leven EA, Maffucci P, Ochs HD et al (2016) Hyper IgM syndrome: a report from the USIDNET Registry. JCI. 36(5):490–501

    CAS  Google Scholar 

  24. Barth PG, Scholte HR, Berden JA et al (1983) An X-linked mitochondrial disease affecting cardiac muscle, skeletal muscle and neutrophil leucocytes. J Neurol Sci 62(1–3):327–355

    Article  CAS  PubMed  Google Scholar 

  25. Boztug K, Jarvinen PM, Salzer E et al (2014) JAGN1 deficiency causes aberrant myeloid cell homeostasis and congenital neutropenia. Nat Genet 46(9):1021–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bohn G, Allroth A, Brandes G et al (2007) A novel human primary immunodeficiency syndrome caused by deficiency of the endosomal adaptor protein p14. Nat Med 13(1):38–45

    Article  CAS  PubMed  Google Scholar 

  27. Makaryan V, Rosenthal EA, Bolyard AA et al (2014) TCIRG1-associated congenital neutropenia. Hum Mut 35(7):824–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Skokowa J, Cario G, Uenalan M et al (2006) LEF-1 is crucial for neutrophil granulocytopoiesis and its expression is severely reduced in congenital neutropenia. Nat Med 12(10):1191–1197

    Article  CAS  PubMed  Google Scholar 

  29. Skokowa J, Lan D, Thakur BK et al (2009) NAMPT is essential for the G-CSF-induced myeloid differentiation via a NAD(+)-sirtuin-1-dependent pathway. Nat Med 15(2):151–158

    Article  CAS  PubMed  Google Scholar 

  30. Skokowa J, Welte K (2013) Defective G-CSFR signaling pathways in congenital neutropenia. Hematol Oncol Clin North Am 27(1):75–88 viii

    Article  PubMed  Google Scholar 

  31. Welte K, Zeidler C, Reiter A et al (1990) Differential effects of granulocyte-macrophage colony-stimulating factor and granulocyte colony-stimulating factor in children with severe congenital neutropenia. Blood 75(5):1056–1063

    CAS  PubMed  Google Scholar 

  32. Jia SH, Li Y, Parodo J et al (2004) Pre-B cell colony-enhancing factor inhibits neutrophil apoptosis in experimental inflammation and clinical sepsis. JCI. 113(9):1318–1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hirai H, Zhang P, Dayaram T et al (2006) C/EBPbeta is required for ‘emergency’ granulopoiesis. Nat Immunol 7(7):732–739

    Article  CAS  PubMed  Google Scholar 

  34. Akagi T, Saitoh T, O’Kelly J, Akira S, Gombart AF, Koeffler HP (2008) Impaired response to GM-CSF and G-CSF, and enhanced apoptosis in C/EBPbeta-deficient hematopoietic cells. Blood 111(6):2999–3004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Skokowa J, Welte K (2009) Dysregulation of myeloid-specific transcription factors in congenital neutropenia. ANYAS 1176:94–100

    Article  CAS  Google Scholar 

  36. Schilling E, Hauschildt S (2012) Extracellular ATP induces P2X7-dependent nicotinamide phosphoribosyltransferase release in LPS-activated human monocytes. Innate immun. 18(5):738–744

    Article  PubMed  Google Scholar 

  37. Schilling E, Wehrhahn J, Klein C, Raulien N, Ceglarek U, Hauschildt S (2012) Inhibition of nicotinamide phosphoribosyltransferase modifies LPS-induced inflammatory responses of human monocytes. Innate immun 18(3):518–530

    Article  CAS  PubMed  Google Scholar 

  38. Li Y, Zhang Y, Dorweiler B et al (2008) Extracellular Nampt promotes macrophage survival via a nonenzymatic interleukin-6/STAT3 signaling mechanism. JBC. 283(50):34833–34843

    Article  CAS  Google Scholar 

  39. Dinauer MC, Pierce EA, Bruns GA, Curnutte JT, Orkin SH (1990) Human neutrophil cytochrome b light chain (p22-phox). Gene structure, chromosomal location, and mutations in cytochrome-negative autosomal recessive chronic granulomatous disease. JCI 86(5):1729–1737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Malam Z, Parodo J, Waheed F, Szaszi K, Kapus A, Marshall JC (2011) Pre-B cell colony-enhancing factor (PBEF/Nampt/visfatin) primes neutrophils for augmented respiratory burst activity through partial assembly of the NADPH oxidase. JI 186(11):6474–6484

    CAS  Google Scholar 

  41. Hong EH, Yun HS, Kim J et al (2011) Nicotinamide phosphoribosyltransferase is essential for interleukin-1beta-mediated dedifferentiation of articular chondrocytes via SIRT1 and extracellular signal-regulated kinase (ERK) complex signaling. JBC 286(32):28619–28631

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the physicians of the Severe Chronic Neutropenia International Registry for providing patient material. We thank study subjects for their cooperation. This work was supported by the Madeleine Schickedanz Kinderkrebs-Stiftung, DFG-SK-92/4, the Excellence Initiative of the Tübingen University, the ERA-Net (e-rare Network of rare diseases), and the Federal Ministry of Education and Research (German Network on Congenital Bone Marrow Failure Syndromes).

Author contributions

C. K., K. W., J. S., and L. K. made the initial observations, designed the experiments, analyzed the data, supervised experimentation, and wrote the manuscript; B. S., T.M. and P.M. performed the experiments; and C. Z. provided patients’ material and patients’ information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Welte.

Ethics declarations

Approval for this study was obtained from the Hannover Medical School’s Institutional Review Board, and informed consent was obtained in accordance with the Declaration of Helsinki.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Julia Skokowa and Karl Welte contributed as senior authors equally to this work.

Electronic supplementary material

.

ESM 1

(XLS 44890 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koch, C., Samareh, B., Morishima, T. et al. GM-CSF treatment is not effective in congenital neutropenia patients due to its inability to activate NAMPT signaling. Ann Hematol 96, 345–353 (2017). https://doi.org/10.1007/s00277-016-2894-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-016-2894-5

Keywords

Navigation