Skip to main content

Advertisement

Log in

Primary myelofibrosis and its targeted therapy

  • Review Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Primary myelofibrosis is a unique entity among BCR-ABL-negative myeloproliferative diseases, manifesting as bone marrow fibrosis and pancytopenia. Considerable evidence indicates that genetic and epigenetic abnormalities can result in defective clonal hematopoietic stem cell proliferation in addition to bone marrow microenvironment alteration. The “bad seeds in bad soil” theory illustrates the orchestrating efforts of hematopoietic stem cells, stromal cells, and their surrounding signaling molecules in myelofibrosis progression and malignancy transformation, though the exact mechanism of myelofibrosis is still not clear. This study reviews current concepts and questions regarding the pathogenesis of primary myelofibrosis and discusses the emerging targeted therapy aimed at restoring normal bone marrow environment and halting bone marrow fibrotic deterioration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Tefferi A (2013) Primary myelofibrosis: 2013 update on diagnosis, riskstratification, and management. Am J Hematol 88(2):141–150

    Article  CAS  PubMed  Google Scholar 

  2. Mesa RA, Li CY, Ketterling RP et al (2005) Leukemic transformation in myelofibrosis with myeloid metaplasia: a single-institution experience with 91 cases. Blood 105(3):973–977

    Article  CAS  PubMed  Google Scholar 

  3. Arber DA, Attilio O, Hasserjian R et al (2016) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127:2391–2405

    Article  PubMed  Google Scholar 

  4. Thiele J, Kvasnicka HM, Müllauer L et al (2011) Essential thrombocythemia versus early primary myelofibrosis: a multicenter study to validate the WHO classification. Blood 117(21):5710–5718

    Article  CAS  PubMed  Google Scholar 

  5. Kvasnicka HM, Thiele J (2010) Prodromal myeloproliferative neoplasms: the 2008 WHO classification. Am J Hematol 85(1):62–69

    PubMed  Google Scholar 

  6. Barbui T, Thiele J, Passamonti F et al (2011) Survival and disease progression in essential thrombocythemia are significantly influenced by accurate morphologic diagnosis: an international study. J Clin Oncol 29(23):3179–3184

    Article  PubMed  Google Scholar 

  7. Barosi G, Mesa RA, Thiele J et al (2008) Proposed criteria for the diagnosis of post-polycythemia vera and post-essential thrombocythemia myelofibrosis: a consensus statement from the International Working Group for Myelofibrosis Research and Treatment. Leukemia 22(2):437–438

    Article  CAS  PubMed  Google Scholar 

  8. Cervantes F, Dupriez B, Pereira A et al (2009) New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood 113(13):2895–2901

    Article  CAS  PubMed  Google Scholar 

  9. Passamonti F, Cervantes F, Vannucchi AM et al (2010) A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood 115(9):1703–1708

    Article  CAS  PubMed  Google Scholar 

  10. Gangat N, Caramazza D, Vaidya R et al (2011) DIPSS plus: a refined dynamic international prognostic scoring system for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol 29(4):392–397

    Article  PubMed  Google Scholar 

  11. Kralovics R, Passamonti F, Buser AS et al (2005) A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 352(17):1779–1790

    Article  CAS  PubMed  Google Scholar 

  12. Scott LM, Tong W, Levine RL et al (2007) JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 356.5:459–468

    Article  Google Scholar 

  13. Pikman Y, Lee BH, Mercher T et al (2006) MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med 3.7:e270

    Article  Google Scholar 

  14. Oh ST, Simonds EF, Jones C et al (2010) Novel mutations in the inhibitory adaptor protein LNK drive JAK-STAT signaling in patients with myeloproliferative neoplasms. Blood 116(6):988–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vainchenker W, Constantinescu SN, Plo I (2016) Recent advances in understanding myelofibrosis and essential thrombocythemia. F1000Res 5:700

    Article  Google Scholar 

  16. Chachoua I, Pecquet C, El-Khoury M et al (2016) Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants. Blood 127(10):1325–1335

    Article  CAS  PubMed  Google Scholar 

  17. Castro-Malaspina H, Jhanwar SC (1984) Properties of myelofibrosis-derived fibroblasts. Prog Clin Biol Res 154:307–322

    CAS  PubMed  Google Scholar 

  18. Bonner JC (2004) Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth F R 15(4):255–273

    Article  CAS  Google Scholar 

  19. Barosi G (2014) Essential thrombocythemia vs. early/prefibrotic myelofibrosis: why does it matter. Best Pract Res Clin Haematol 27(2):129–140

    Article  PubMed  Google Scholar 

  20. Bock O, Höftmann J, Theophile K et al (2008) Bone morphogenetic proteins are overexpressed in the bone marrow of primary myelofibrosis and are apparently induced by fibrogenic cytokines. Am J Pathol 172(4):951–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Steurer M, Zoller H, Augustin F et al (2007) Increased angiogenesis in chronic idiopathic myelofibrosis: vascular endothelial growth factor as a prominent angiogenic factor. Hum Pathol 38(7):1057–1064

    Article  CAS  PubMed  Google Scholar 

  22. Bock O, Loch G, Schade U et al (2005) Osteosclerosis in advanced chronic idiopathic myelofibrosis is associated with endothelial overexpression of osteoprotegerin. Br J Haematol 130(1):76–82

    Article  CAS  PubMed  Google Scholar 

  23. Martinaud C, Desterke C, Konopacki J et al (2015) Osteogenic potential of mesenchymal stromal cells contributes to primary myelofibrosis. Cancer Res 75(22):4753–4765

    Article  CAS  PubMed  Google Scholar 

  24. Wang JC, Sindhu H, Chen C et al (2015) Immune derangements in patients with myelofibrosis: the role of Treg, Th17, and sIL2Rα. PLoS One 10(3):e0116723

    Article  PubMed  PubMed Central  Google Scholar 

  25. Harrison JS, Corcoran KE, Joshi D et al (2006) Peripheral monocytes and CD4+ cells are potential sources for increased circulating levels of TGF-beta and substance P in autoimmune myelofibrosis. Am J Hematol 81(1):51–58

    Article  CAS  PubMed  Google Scholar 

  26. Desterke C, Martinaud C, Ruzehaji N, Le Bousse-Kerdilès MC (2015) Inflammation as a keystone of bone marrow stroma alterations in primary myelofibrosis. Mediators Inflamm 2015:415024

    Article  PubMed  PubMed Central  Google Scholar 

  27. Schepers P, Pietras EM, Reynaud D et al (2013) Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell 13(3):285–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Verstovsek S, Kantarjian H, Mesa RA et al (2010) Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N Engl J Med 363(12):1117–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hoermann G, Greiner G, Valent P (2015) Cytokine regulation of microenvironmental cells in myeloproliferative neoplasms. Mediators Inflamm 2015:869242

    Article  PubMed  PubMed Central  Google Scholar 

  30. Verstovsek S, Mesa RA, Gotlib J et al (2012) A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med 366(9):799–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Harrison C, Kiladjian JJ, Al-Ali HK et al (2012) JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med 366(9):787–798

    Article  CAS  PubMed  Google Scholar 

  32. Verstovsek S, Mesa RA, Gotlib J et al (2015) Efficacy, safety, and survival with ruxolitinib in patients with myelofibrosis: results of a median 3-year follow-up of COMFORT-I. Haematologica 100(4):479–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vannucchi AM, Kantarjian HM, Kiladjian JJ et al (2015) A pooled analysis of overall survival in COMFORT-I and COMFORT-II, 2 randomized phase III trials of ruxolitinib for the treatment of myelofibrosis. Haematologica 100(9):1139–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kvasnicka HM, Thiele J, Bueso-Ramos CE et al (2014) Ruxolitinib-induced modulation of bone marrow microenvironment in patients with myelofibrosis is associated with inflammatory cytokine levels. Blood 124(21):3182–3182

    Google Scholar 

  35. Tefferi A, Litzow MR, Pardanani A (2011) Long-term outcome of treatment with ruxolitinib in myelofibrosis. N Engl J Med 365(15):1455–1457

    Article  CAS  PubMed  Google Scholar 

  36. Geyer HL, Mesa RA (2015) Emerging drugs for the treatment of myelofibrosis. Expert Opin Emerg Drugs 20(4):663–678

    Article  CAS  PubMed  Google Scholar 

  37. Grunwald MR, Spivak JL (2014) Ruxolitinib enhances platelet production in patients with thrombocytopenic myelofibrosis. J Clin Oncol 34(5):e38–e40

    Article  PubMed  Google Scholar 

  38. Komrokji RS, Seymour JF, Roberts AW et al (2015) Results of a phase 2 study of pacritinib (SB1518), a JAK2/JAK2 (V617F) inhibitor, in patients with myelofibrosis. Blood 125(17):2649–2655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Teglund S, Toftgård R (2010) Hedgehog beyond medulloblastoma and basal cell carcinoma. Biochim Biophys Acta 1805(2):181–208

    CAS  PubMed  Google Scholar 

  40. Tibes R, Mesa RA (2014) Targeting hedgehog signaling in myelofibrosis and other hematologic malignancies. J Hematol Oncol 7:18

    Article  PubMed  PubMed Central  Google Scholar 

  41. Keller MD, Rampal RK, Shank K et al (2013) Improved efficacy of combination of JAK2 and hedgehog inhibitors in myelofibrosis. Blood 122:666

    Article  Google Scholar 

  42. Tefferi A, Lasho TL, Begna KH et al (2015) A pilot study of the telomerase inhibitor imetelstat for myelofibrosis. N Engl J Med 373(10):908–919

    Article  CAS  PubMed  Google Scholar 

  43. Wen QJ, Yang Q, Goldenson B et al (2015) Targeting megakaryocytic-induced fibrosis in myeloproliferative neoplasms by AURKA inhibition. Nat Med 21(12):1473–1480

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wang JC, Chen C, Dumlao T et al (2008) Enhanced histone deacetylase enzyme activity in primary myelofibrosis. Leuk Lymphoma 49(12):2321–2327

    Article  CAS  PubMed  Google Scholar 

  45. Ugo V, Marzac C, Teyssandier I et al (2004) Multiple signaling pathways are involved in erythropoietin-independent differentiation of erythroid progenitors in polycythemia vera. Exp Hematol 32(2):179–187

    Article  CAS  PubMed  Google Scholar 

  46. Grimwade LF, Happerfield L, Tristram C et al (2009) PhosphoSTAT5 and phosphoAkt expression in chronic myeloproliferative neoplasms. Br J Haematol 147(4):495–506

    Article  CAS  PubMed  Google Scholar 

  47. Guglielmelli P, Barosi G, Rambaldi A et al (2011) Safety and efficacy of everolimus, a mTOR inhibitor, as single agent in a phase 1/2 study in patients with myelofibrosis. Blood 118(8):2069–2076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank the patients and their family for contributing invaluable knowledge and experience for this study and also would like to thank Dr. Jerry Spivak for providing sincere comments on this manuscript. This study was supported by: AA&MDSIF research grant to JJP (146818), American Cancer Society grant to JJP (124171-IRG-13-043-02), and A Pennsylvania State University College of Medicine research grant to JJP.

Authorship

Contribution: LS, KB, and JJP participated in manuscript writing. JJP designed this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey J. Pu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shantzer, L., Berger, K. & Pu, J.J. Primary myelofibrosis and its targeted therapy. Ann Hematol 96, 531–535 (2017). https://doi.org/10.1007/s00277-016-2785-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-016-2785-9

Keywords

Navigation