Skip to main content
Log in

Mutual relationship between serum ferroxidase activity and hemoglobin levels in elderly individuals

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

The identification of hemoglobin (Hb) biological determinants is of primary clinical interest, in particular in the elderly because of the well-documented relationship between anemia and cognitive and functional decline. Ceruloplasmin (Cp) and non-Cp ferroxidase activity might influence Hb production because of its role in modulating iron mobilization. This potential connection has never been explored so far. Therefore, in the present study, we evaluated the possible association between serum ferroxidase activity (sFeOx) and Hb in a sample of 136 apparently healthy older individuals. The results revealed that nonlinear (quadratic) regression explained the relationship between the two variables of interest better than did the linear one (R 2 = 0.09 vs. R 2 = 0.03). The same analysis highlighted a linear behavior for the relationship between Hb and sFeOx, for two separate subsamples stratified on the basis of the Hb value (141 g/L) corresponding to the parabola vertex. In the subset with higher Hb (high Hb), sFeOx was positively associated (r = 0.44, p = 0.003) while in the low Hb subset, the association was negative (r = −0.26, p = 0.01). Notably, we found that the concentration of Cp was significantly higher in Low Hb compared to High Hb subsample (p < 0.05), with this multicopper oxidase selectively contributing to sFeOx in the former group (r = 0.348, p = 0.001). Collectively, this exploratory study suggests that ferroxidases might play a role in dispatching the body’s iron toward erythropoietic tissues, with Cp contribution that might become more important in stress-like conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Beutler E, Waalen J (2006) The definition of anemia: what is the lower limit of normal of the blood hemoglobin concentration? Blood 107:1747–1750. doi:10.1182/blood-2005-07-3046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Makipour S, Kanapuru B, Ershler WB (2008) Unexplained anemia in the elderly. Semin Hematol 45:250–254. doi:10.1053/j.seminhematol.2008.06.003

    Article  PubMed  PubMed Central  Google Scholar 

  3. Onem Y, Terekeci H, Kucukardali Y et al (2010) Albumin, hemoglobin, body mass index, cognitive and functional performance in elderly persons living in nursing homes. Arch Gerontol Geriatr 50:56–59. doi:10.1016/j.archger.2009.01.010

    Article  PubMed  Google Scholar 

  4. Atti AR, Palmer K, Volpato S et al (2006) Anaemia increases the risk of dementia in cognitively intact elderly. Neurobiol Aging 27:278–284. doi:10.1016/j.neurobiolaging.2005.02.007

    Article  CAS  PubMed  Google Scholar 

  5. Go AS, Yang J, Ackerson LM et al (2006) Hemoglobin level, chronic kidney disease, and the risks of death and hospitalization in adults with chronic heart failure—the anemia in chronic heart failure: Outcomes and Resource Utilization (ANCHOR) Study. Circulation 113:2713–2723. doi:10.1161/CIRCULATIONAHA.105.577577

    Article  CAS  PubMed  Google Scholar 

  6. Guralnik JM (2004) Prevalence of anemia in persons 65 years and older in the United States: evidence for a high rate of unexplained anemia. Blood 104:2263–2268. doi:10.1182/blood-2004-05-1812

    Article  CAS  PubMed  Google Scholar 

  7. Halfdanarson TR, Kumar N, Li C-Y et al (2008) Hematological manifestations of copper deficiency: a retrospective review. Eur J Haematol 80:523–531. doi:10.1111/j.1600-0609.2008.01050.x

    Article  CAS  PubMed  Google Scholar 

  8. Prohaska JR (2011) Impact of copper limitation on expression and function of multicopper oxidases (ferroxidases). Adv Nutr An Int Rev J 2:89–95. doi:10.3945/an.110.000208

    Article  CAS  Google Scholar 

  9. Collins JF, Prohaska JR, Knutson MD (2010) Metabolic crossroads of iron and copper. Nutr Rev 68:133–147. doi:10.1111/j.1753-4887.2010.00271.x

    Article  PubMed  PubMed Central  Google Scholar 

  10. Osaki S, Johnson DA, Frieden E (1971) The mobilization of iron from the perfused mammalian liver by a serum copper enzyme, ferroxidase I. J Biol Chem 246:3018–3023

    CAS  PubMed  Google Scholar 

  11. Gray LW, Kidane TZ, Nguyen A et al (2009) Copper proteins and ferroxidases in human plasma and that of wild-type and ceruloplasmin knockout mice. Biochem J 419:237–245. doi:10.1042/BJ20081983

    Article  CAS  PubMed  Google Scholar 

  12. De Domenico I, Ward DM, di Patti MCB et al (2007) Ferroxidase activity is required for the stability of cell surface ferroportin in cells expressing GPI-ceruloplasmin. EMBO J 26:2823–2831. doi:10.1038/sj.emboj.7601735

    Article  PubMed  PubMed Central  Google Scholar 

  13. Xu X, Pin S, Gathinji M et al (2004) Aceruloplasminemia: an inherited neurodegenerative disease with impairment of iron homeostasis. Ann N Y Acad Sci 1012:299–305

    Article  CAS  PubMed  Google Scholar 

  14. Zuliani G, Ranzini M, Guerra G et al (2007) Plasma cytokines profile in older subjects with late onset Alzheimer’s disease or vascular dementia. J Psychiatr Res 41:686–693. doi:10.1016/j.jpsychires.2006.02.008

    Article  CAS  PubMed  Google Scholar 

  15. Erel O (1998) Automated measurement of serum ferroxidase activity. Clin Chem 44:2313–2319

    CAS  PubMed  Google Scholar 

  16. Cervellati C, Romani A, Fainardi E et al (2014) Serum ferroxidase activity in patients with multiple sclerosis: a pilot study. In Vivo 28:1197–1200

    PubMed  Google Scholar 

  17. Cervellati C, Romani A, Bergamini CM et al (2015) PON-1 and ferroxidase activities in older patients with mild cognitive impairment, late onset Alzheimer’s disease or vascular dementia. Clin Chem Lab Med 53:1049–1056. doi:10.1515/cclm-2014-0803

    Article  CAS  PubMed  Google Scholar 

  18. Zakai NA, French B, Arnold AM et al (2013) Hemoglobin decline, function, and mortality in the elderly: the cardiovascular health study. Am J Hematol 88:5–9. doi:10.1002/ajh.23336

    Article  CAS  PubMed  Google Scholar 

  19. Zakai NA, McClure LA, Prineas R et al (2009) Correlates of anemia in American blacks and whites: the REGARDS Renal Ancillary Study. Am J Epidemiol 169:355–364. doi:10.1093/aje/kwn355

    Article  PubMed  Google Scholar 

  20. Cervellati C, Wood PL, Romani A et al (2016) Oxidative challenge in Alzheimer’s disease: state of knowledge and future needs. J Investig Med 64:21–32. doi:10.1136/jim-2015-000017

    Article  PubMed  Google Scholar 

  21. Hentze MW, Muckenthaler MU, Andrews NC (2004) Balancing Acts. Cell 117:285–297. doi:10.1016/S0092-8674(04)00343-5

    Article  CAS  PubMed  Google Scholar 

  22. Logan JI, Harveyson KB, Wisdom GB et al (1994) Hereditary caeruloplasmin deficiency, dementia and diabetes mellitus. QJM 87:663–670

    CAS  PubMed  Google Scholar 

  23. Morita H, Ikeda S, Yamamoto K et al (1995) Hereditary ceruloplasmin deficiency with hemosiderosis: a clinicopathological study of a Japanese family. Ann Neurol 37:646–656. doi:10.1002/ana.410370515

    Article  CAS  PubMed  Google Scholar 

  24. Kosman DJ (2013) Iron metabolism in aerobes: managing ferric iron hydrolysis and ferrous iron autoxidation. Coord Chem Rev 257:210–217. doi:10.1016/j.ccr.2012.06.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wong BX, Ayton S, Lam LQ et al (2014) A comparison of ceruloplasmin to biological polyanions in promoting the oxidation of Fe(2+) under physiologically relevant conditions. Biochim Biophys Acta 1840:3299–3310. doi:10.1016/j.bbagen.2014.08.006

    Article  CAS  PubMed  Google Scholar 

  26. Meyer LA, Durley AP, Prohaska JR, Harris ZL (2001) Copper transport and metabolism are normal in aceruloplasminemic mice. J Biol Chem 276:36857–36861. doi:10.1074/jbc.M105361200

    Article  CAS  PubMed  Google Scholar 

  27. Prohaska JR (1981) Comparison between dietary and cenetic copper deficiency in mice: copper-dependent anemia. Nutr Res 1:159–167. doi:10.1016/S0271-5317(81)80098-X

    Article  CAS  Google Scholar 

  28. Martin F, Linden T, Katschinski DM et al (2005) Copper-dependent activation of hypoxia-inducible factor (HIF)-1: implications for ceruloplasmin regulation. Blood 105:4613–4619. doi:10.1182/blood-2004-10-3980

    Article  CAS  PubMed  Google Scholar 

  29. Sarkar J, Seshadri V, Tripoulas NA et al (2003) Role of ceruloplasmin in macrophage iron efflux during hypoxia. J Biol Chem 278:44018–44024. doi:10.1074/jbc.M304926200

    Article  CAS  PubMed  Google Scholar 

  30. Ranganathan PN, Lu Y, Jiang L et al (2011) Serum ceruloplasmin protein expression and activity increases in iron-deficient rats and is further enhanced by higher dietary copper intake. Blood 118:3146–3153. doi:10.1182/blood-2011-05-352112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guyatt GH, Patterson C, Ali M et al (1990) Diagnosis of iron-deficiency anemia in the elderly. Am J Med 88:205–209

    Article  CAS  PubMed  Google Scholar 

  32. Nowak M, Wielkoszyński T, Marek B et al (2010) Antioxidant potential, paraoxonase 1, ceruloplasmin activity and C-reactive protein concentration in diabetic retinopathy. Clin Exp Med 10:185–192. doi:10.1007/s10238-009-0084-7

    Article  CAS  PubMed  Google Scholar 

  33. Artz AS, Xue Q-L, Wickrema A et al (2014) Unexplained anaemia in the elderly is characterised by features of low grade inflammation. Br J Haematol 167:286–289. doi:10.1111/bjh.12984

    Article  PubMed  PubMed Central  Google Scholar 

  34. Olivieri S, Conti A, Iannaccone S et al (2011) Ceruloplasmin oxidation, a feature of Parkinson’s disease CSF, inhibits ferroxidase activity and promotes cellular iron retention. J Neurosci 31:18568–18577. doi:10.1523/JNEUROSCI.3768-11.2011

    Article  CAS  PubMed  Google Scholar 

  35. Ayton S, Lei P, Duce JA et al (2013) Ceruloplasmin dysfunction and therapeutic potential for Parkinson disease. Ann Neurol 73:554–559. doi:10.1002/ana.23817

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors want to thank Monica Squezanti, Manuela Spagnolo, and Juana M Sanz for their meaningful contribution in data collection and elaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Cervellati.

Ethics declarations

This study conforms to the Code of Ethics of the World Medical Association (Declaration of Helsinki) and was conducted according to the guidelines for Good Clinical Practice (European Medicines Agency, http://www.ema.europa.eu). Signed informed consent, which was written in compliance with local and national ethical guidelines, was obtained from each patient prior to the inclusion into the study. Personal data and medical history were collected by a structured interview from participants.

Funding

The study was supported by “Local Research Project” grant from University of Ferrara.

Conflicts of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romani, A., Trentini, A., Passaro, A. et al. Mutual relationship between serum ferroxidase activity and hemoglobin levels in elderly individuals. Ann Hematol 95, 1333–1339 (2016). https://doi.org/10.1007/s00277-016-2709-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-016-2709-8

Keywords

Navigation