Skip to main content

Advertisement

Log in

Bone marrow niche in immune thrombocytopenia: a focus on megakaryopoiesis

  • Review Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Immune thrombocytopenia (ITP) is an autoimmune disorder characterized by increased bleeding tendency and thrombocytopenia. In fact, the precise pathogenesis of this disease is still not clear. Megakaryopoiesis involves complete differentiation of megakaryocyte (MK) progenitors to functional platelets. This complex process occurs in specific bone marrow (BM) niches composed of several hematopoietic and non-hematopoietic cell types, soluble factors, and extracellular matrix proteins. These specialized microenvironments sustain MK maturation and localization to sinusoids as well as platelet release into circulation. However, MKs in ITP patients show impaired maturation and signs of degradation. Intrinsic defects in MKs and their extrinsic environment have been implicated in altered megakaryopoiesis in this disease. In particular, aberrant expression of miRNAs directing MK proliferation, differentiation, and platelet production; defective MK apoptosis; and reduced proliferation and differentiation rate of the MSC compartment observed in these patients may account for BM defects in ITP. Furthermore, insufficient production of thrombopoietin is another likely reason for ITP development. Therefore, identifying the signaling pathways and transcription factors influencing the interaction between MKs and BM niche in ITP patients will contribute to increased platelet production in order to prevent incomplete MK maturation and destruction as well as BM fibrosis and apoptosis in ITP. In this review, we will examine the interaction and role of BM niches in orchestrating megakaryopoiesis in ITP patients and discuss how these factors can be exploited to improve the quality of patient treatment and prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ku FC, Tsai CR, Wang J et al (2013) Stromal‐derived factor‐1 gene variations in pediatric patients with primary immune thrombocytopenia. Eur J Haematol 90(1):25–30

    Article  CAS  PubMed  Google Scholar 

  2. Rank A, Weigert O, Ostermann H et al (2010) Management of chronic immune thrombocytopenic purpura: targeting insufficient megakaryopoiesis as a novel therapeutic principle. Biol Targets Ther 4:139

    Article  CAS  Google Scholar 

  3. Olsson B, Andersson P-O, Jernås M et al (2003) T-cell mediated cytotoxicity toward platelets in chronic idiopathic thrombocytopenic purpura. Nat Med 9(9):1123–4

    Article  CAS  PubMed  Google Scholar 

  4. Badenhorst P, Lotter M, Pieters H et al (1986) Platelet turnover and kinetics in immune thrombocytopenic purpura: results with autologous 111In-labeled platelets and homologous 51Cr-labeled platelets differ. Blood 67(1):86–92

    PubMed  Google Scholar 

  5. Malara A, Currao M, Gruppi C et al (2014) Megakaryocytes contribute to the bonemarrow-matrix environment by expressing fibronectin, type IVcollagen, and laminin. Stem Cells 32(4):926–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Blau O, Baldus CD, Hofmann WK et al (2011) Mesenchymal stromal cells of myelodysplastic syndrome and acute myeloid leukemia patients have distinct genetic abnormalities compared with leukemic blasts. Blood 118:5583–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang D, Li H, Ma L, Zhang X, Xue F, Zhou Z, Chi Y, Liu X, Huang Y, Yang Y, Yang R (2014) The defective bone marrow-derived mesenchymal stem cells in patients with chronic immune thrombocytopenia. Autoimmunity 47(8):519–29

  8. Shiozawa Y, Havens AM, Pienta KJ et al (2008) The bone marrow niche: habitat to hematopoietic and mesenchymal stem cells, and unwitting host to molecular parasites. Leukemia 22:941–50

    Article  CAS  PubMed  Google Scholar 

  9. Taichman RS, Emerson SG (1994) Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. J Exp Med 179:1677–82

    Article  CAS  PubMed  Google Scholar 

  10. Deutsch VR, Tomer A (2013) Advances in megakaryocytopoiesis and thrombopoiesis: from bench to bedside. Br J Haematol 161(6):778–93

  11. Avecilla ST, Hattori K, Heissig B et al (2004) Chemokine-mediated interaction of progenitors with the bone marrow vascular hematopoietic niche is required for thrombopoiesis. Nat Med 10:64–71

    Article  CAS  PubMed  Google Scholar 

  12. Malara A, Abbonante V, Di Buduo CA, Tozzi L, Currao M, Balduini A (2015) The secret life of a megakaryocyte: emerging roles in bone marrow homeostasis control. Cell Mol Life Sci 72(8):1517–36

  13. Wang L, Li Y, Houa M (2007) Idiopathic thrombocytopenic purpura and dysmegakaryocytopoiesis. Crit Rev Oncol Hematol 64:83–9

    Article  PubMed  Google Scholar 

  14. Edelstein LC, Bray PF (2011) MicroRNAs in platelet production and activation. Blood 117(20):5289–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Baya A, Coskunb E, Oztuzcuc S et al (2014) Plasma microRNA profiling of pediatric patients with immune thrombocytopenic purpura. Blood Coagul Fibrinolysis 25:379–83

    Article  CAS  Google Scholar 

  16. Son B, Shin KS, Bae SY et al (2004) Bone marrow expression and plasma concentration of basic fibroblast growth factor in patients with idiopathic thrombocytopenic purpura. IJH 80:193–6

    Google Scholar 

  17. Deutsch VR, Tomer A (2006) Megakaryocyte development and platelet production. BJH 134:453–66

    Article  CAS  PubMed  Google Scholar 

  18. Pasquet JM, Gross BS, Gratacap MP et al (2000) Thrombopoietin potentiates collagen receptor signaling in platelets through a phosphatidylinositol 3-kinase-dependent pathway. Blood 95:3429–34

    CAS  PubMed  Google Scholar 

  19. Nutt SL, Metcalf D, D’Amico A et al (2005) Dynamic regulation of PU.1 expression in multipotent hematopoietic progenitors. J Exp Med 201:221–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Arinobu Y, Mizuno S, Chong Y et al (2007) Reciprocal activation of GATA-1 and PU.1 marks initial specification of hematopoietic stem cells into myeloerythroid and myelolymphoid lineages. Cell Stem Cell 1:416–27

    Article  CAS  PubMed  Google Scholar 

  21. Kobayashi M, Laver JH, Kato T et al (1996) Thrombopoietin supports proliferation of human primitive hematopoietic cells in synergy with steel factor and/or interleukin-3. Blood 88:429–36

    CAS  PubMed  Google Scholar 

  22. Norol F, Vitrat N, Cramer E et al (1998) Effects of cytokines on platelet production from blood and marrow CD34+ cells. Blood 91:830–43

    CAS  PubMed  Google Scholar 

  23. Hou M, Andersson PO, Stockelberg D et al (1998) Plasma thrombopoietin levels in thrombocytopenic states: implication for a regulatory role of bone marrow megakaryocytes. Br J Haematol 101:420–4

    Article  CAS  PubMed  Google Scholar 

  24. Craddock CG Jr, Adams WS, Perry S et al (1955) The dynamics of platelet production as studied by a depletion technique in normal and irradiated dogs. J Lab Clin Med 45:906–19

    PubMed  Google Scholar 

  25. Pisciotta AV, Stefanini M, Dameshek W et al (1953) Studies on platelets. X. Morphologic characteristics of megakaryocytes by phase contrast microscopy in normals and in patients with idiopathic thrombocytopenic purpura. Blood 8:703–23

    CAS  PubMed  Google Scholar 

  26. Houwerzijl EJ, Blom NR, van der Want JJL et al (2006) Megakaryocytic dysfunction in myelodys- plastic syndromes and idiopathic thrombocytopenic purpura is in part due to different forms of cell death. Leukemia 20:1937–42

    Article  CAS  PubMed  Google Scholar 

  27. Houwerzijl EJ, Blom NR, van der Want JJL et al (2004) Ultrastructural study shows morphologic features of apoptosis and para-apoptosis in megakaryocytes from patients with idiopathic thrombocytopenic purpura. Blood 103:500–6

    Article  CAS  PubMed  Google Scholar 

  28. Gunten SV, Wehrli M, Simon HU et al (2013) Cell death in immune thrombocytopenia: novel insights and perspectives. Semin Hematol 50:109–15

    Article  CAS  Google Scholar 

  29. Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–7

    Article  CAS  PubMed  Google Scholar 

  30. Broudy VC, Lin NL, Kaushansky K et al (1995) Thrombopoietin (cmpl ligand) acts synergistically with erythropoietin, stem cell factor, and interleukin-11 to enhance murine megakaryocyte colony growth and increases megakaryocyte ploidy in vitro. Blood 85(7):1719–26

    CAS  PubMed  Google Scholar 

  31. Pallotta I, Lovett M, Rice W et al (2009) Bone marrow osteoblastic niche: a new model to study physiological regulation of megakaryopoiesis. PLoS One 4(12):e8359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Majumdar MK, Keane-Moore M, Buyaner D et al (2003) Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J Biomed Sci 10(2):228–41

    Article  CAS  PubMed  Google Scholar 

  33. Dimitriou HE, Linardakis G, Martimianaki et al (2008) Properties and potential of bone marrow mesenchymal stromal cells from children with hematologic diseases. Cytotherapy 10:125–133

    Article  CAS  PubMed  Google Scholar 

  34. Sun LY, Zhang HY, Feng XB et al (2007) Abnormality of bone marrow-derived mesenchymal stem cells in patients with systemic lupus erythematosus. Lupus 16:121–8

    Article  CAS  PubMed  Google Scholar 

  35. Stasi R (2012) Immune thrombocytopenia: pathophysiologic and clinical update. Semin Thromb Hemost 38:454–62

    Article  CAS  PubMed  Google Scholar 

  36. Uccelli A, Moretta L, Pistoia V (2006) Immunoregulatory function of mesenchymal stem cells. Eur J Immunol 36:2566–73

    Article  CAS  PubMed  Google Scholar 

  37. Liu B, Zhao H, Poon MC et al (2007) Abnormality of CD4+CD25+ regulatory T cells in idiopathic thrombocytopenic purpura. Eur J Haematol 78:139–43

    CAS  PubMed  Google Scholar 

  38. Perez-Simon JA, Tabera S, Sarasquete ME et al (2009) Mesenchymal stem cells are functionally abnormal in patients with immune thrombocytopenic purpura. Cytotherapy 11:698–705

    Article  CAS  PubMed  Google Scholar 

  39. Carvalho JF, Blank M, Shoenfeld Y et al (2007) Vascular endothelial growth factor (VEGF) in autoimmune diseases. J Clin Immunol 27:246–56

    Article  CAS  PubMed  Google Scholar 

  40. Skibinski G (2003) The role of hepatocyte growth factor/c-met interactions in the immune system. Arch Immunol Ther Exp 51:277–82

    CAS  Google Scholar 

  41. Roncarolo MG, Gregori S, Battaglia M et al (2006) Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol Rev 212:28–50

    Article  CAS  PubMed  Google Scholar 

  42. Kastrinaki MC, Pavlaki K, Batsali AK et al (2013) Mesenchymal stem cells in immune-mediated bone marrow failure syndromes. Clin Dev Immunol 10:1–10

    Article  CAS  Google Scholar 

  43. Kacena MA, Nelson T, Clough ME et al (2006) Megakaryocyte-mediated inhibition of osteoclast development. Bone 39(5):991–99

    Article  CAS  PubMed  Google Scholar 

  44. Ciovacco WA, Goldberg CG, Tayloret AF et al (2009) The role of gap junctions in megakaryocyte-mediated osteoblast proliferation and differentiation. Bone 44(1):80–86

    Article  CAS  PubMed  Google Scholar 

  45. Lemieux JM, Horowitz MC, Kacena MA et al (2010) Involvement of integrins alpha(3)beta(1) and alpha(5)beta(1) and glycoprotein IIb in megakaryocyte-induced osteoblast proliferation. J Cell Biochem 109(5):927–32

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Azizdoost S, Fakher R, Saki N (2013) Bone marrow neoplastic niche in leukemia. ISH 10:1–8

    Google Scholar 

  47. Ciovacco WA, Cheng YH, Horowitz MC et al (2010) Immature and mature megakaryocytes enhance osteoblast proliferation and inhibit osteoclast formation. J Cell Biochem 109(4):774–81

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hamada T, Mohle R, Hesselgesser J et al (1998) Transendothelial migration of megakaryocytes in response to stromal cell-derived factor 1 (SDF-1) enhances platelet formation. J Exp Med 188:539–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pitchford SC, Lodie T, Rankin SM et al (2012) VEGFR1 stimulates a CXCR4-dependent translocation of megakaryocytes to the vascular niche, enhancing platelet production in mice. Blood 120:2787–95

    Article  CAS  PubMed  Google Scholar 

  50. Dominici M, Rasini V, Bussolari R et al (2009) Restoration and reversible expansion of the osteoblastic hematopoietic stem cell niche after marrow radioablation. Blood 114:2333–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kostyak JC, Naik MU, Naik UP et al (2012) Calcium- and integrin-binding protein 1 regulates megakaryocyte ploidy, adhesion, and migration. Blood 119:838–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mo¨hle R, Green D, Moore MA et al (1997) Constitutive production and thrombin-induced release of vascularendothelial growth factor by human megakaryocytes and platelets. Proc Natl Acad Sci U S A 94(2):663–68

    Article  Google Scholar 

  53. Kwon SM, Lee JH, Lee SH et al (2014) Cross talk with hematopoietic cells regulates the endothelial progenitor cell differentiation of cd34 positive cells. PLoS One 9(8):e106310

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kong Y, Hu Y, Wang YZ et al (2014) Association between an impaired bone marrow vascular microenvironment and prolonged isolated thrombocytopenia after allogeneic hematopoietic stem cell transplantation. BB & MT 20(8):1190–97

    Google Scholar 

  55. Mazharian A (2012) Assessment of megakaryocyte migration and chemotaxis. Methods Mol Biol 788:275–88

    Article  CAS  PubMed  Google Scholar 

  56. Tew JG, Dilosa RM, Burton G et al (1992) Germinal centers and antibody production in bone marrow. Immunol Rev 126:99–112

    Article  CAS  PubMed  Google Scholar 

  57. Belnoue E, Pihlgren M, McGaha T et al (2008) APRIL is critical for plasmablast survival in the bone marrow and poorly expressed by early-life bone marrow stromal cells. Blood 11(5):2755–64

    Article  CAS  Google Scholar 

  58. Winter O, Moser K, Mohr E et al (2010) Megakaryocytes constitute a functional component of a plasma cell niche in the bone marrow. Blood 116(11):1867–75

    Article  CAS  PubMed  Google Scholar 

  59. Psaila B, Lyden D, Roberts I et al (2012) Megakaryocytes, malignancy and bone marrow vascular niches. Thromb Haemost 10(2):177–188

    Article  CAS  Google Scholar 

  60. Kimura R, Nishioka T, Soemantri A et al (2005) Allele-specific transcript quantification detects haplotypic variation in the levels of the SDF-1 transcripts. Hum Mol Genet 14:1579–85

    Article  CAS  PubMed  Google Scholar 

  61. Lima G, Soto-Vega E, Atisha-Fregoso Y et al (2007) MCP-1, RANTES, and SDF-1 polymorphisms in Mexican patients with systemic lupus erythematosus. Hum Immunol 68:980–5

    Article  CAS  PubMed  Google Scholar 

  62. McMillan R (2007) The pathogenesis of chronic immune thrombocytopenic purpura. Semin Hematol 44:3–11

    Article  CAS  Google Scholar 

  63. Cheng G, Saleh MN, Marcher C et al (2011) Eltrombopag for management of chronic immune thrombocytopenia (RAISE): a 6-month, randomized, phase 3 study. Lancet 377:393–402

    Article  CAS  PubMed  Google Scholar 

  64. Sheng GY, Huang XL, Bai ST et al (2004) Expression levels of CXCR4 on megakaryocytes and its ligand in bone marrow in children with acute idiopathic thrombocytopenic purpura. ZhonghuaErKeZaZhi 42:499–501

    Google Scholar 

  65. Apostolidis PA, Woulfe DS, Chavez M et al (2012) Role of tumor suppressor P53 in megakaryopoiesis and platelet function. Exp Hematol 40(2):131–42

    Article  CAS  PubMed  Google Scholar 

  66. Smith MJ, Koch GL (1989) Multiple zones in the sequence of calreticulin (CRP55, calregulin, HACBP), a major calcium binding ER/SR protein. EMBO J 8(12):3581–86

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Anindo MIK, Yaqinuddin A (2012) Insights into the potential use of microRNAs as biomarker in cancer. Int J Surg 10:443–49

    Article  PubMed  Google Scholar 

  68. Li H, Zhao H, Wang D et al (2011) MicroRNA regulation in megakaryocytopoiesis. BJH 155:298–07

    Article  CAS  PubMed  Google Scholar 

  69. Ishibashi T, Kimura H, Uchida T et al (1989) Human interleukin 6 is a direct promoter of maturation of megakaryocytes in vitro. Proc Natl Acad Sci U S A 86(15):5953–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Garzon R, Pichiorri F, Palumbo T et al (2006) MicroRNA fingerprints during human megakaryocytopoiesis. Proc Natl Acad Sci U S A 103(13):5078–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Li J, Wan Y, Guo Q et al (2010) Altered microRNA expression profile with miR-146a upregulation in CD4þ T cells from patients with rheumatoid arthritis. Arthritis Res Ther 12:81–8

    Article  CAS  Google Scholar 

  72. Paul AB, James B, Zeeshan H et al (2013) The beta 1 tubulin R307H single nucleotide polymorphism is associated with treatment failures in immune thrombocytopenia (ITP). Br J Haematol 160:237–243

    Article  CAS  Google Scholar 

  73. Maia MH, PeixotoRde L, de Lima CP et al (2009) Predisposition to idiopathic thrombocytopenic purpura maps close to the major histocompatibility complex class I chain-related gene A. Hum Immunol 70:179–83

    Article  CAS  PubMed  Google Scholar 

  74. Saıtoh T, Kasamatsu T, Inoue M et al (2011) Interleukin-10 gene polymorphism reflects the severity of chronic immune thrombocytopenia in Japanese patients. Int J Lab Hematol 33:526–32

    PubMed  Google Scholar 

  75. Tesse R, Del Vecchio GC, De Mattia D et al (2012) Association of interleukin-(IL-10) haplotypes and serum IL-10 levels in the progression of childhood immune thrombocytopenic purpura. Gene 505:53–56

    Article  CAS  PubMed  Google Scholar 

  76. Abuzenadah AM, Zaher GF, Dallol A et al (2013) Identification of a novel SBF2 missense mutationassociated with a rare case of thrombocytopenia using whole-exome sequencing. J Thromb Thrombolysis 36:501–06

    Article  PubMed  Google Scholar 

  77. Li H, Zhao H, Xue F et al (2013) Reduced expression of mIR409-3p in primary immune thrombocytopenia. Br J Haematol 161:128–135

    Article  CAS  PubMed  Google Scholar 

  78. Martyre MC, Le Bousse-Kerdiles MC, Romquin N et al (1997) Elevated levels of basic fibroblast growth factor in megakaryocytes and platelets from patients with idiopathic myelofibrosis. Br J Haematol 97:441–48

    Article  CAS  PubMed  Google Scholar 

  79. Avraham H, Banu N, Scadden DT et al (1994) Modulation of megakaryocytopoiesis by human basic fibroblastgrowth factor. Blood 83:2126–2132

    CAS  PubMed  Google Scholar 

  80. Allouche M (1995) Basic fibroblast growth factor and hematopoiesis. Leukemia 9:937–942

    CAS  PubMed  Google Scholar 

  81. Yoon SY, Tefferi A, Li CY et al (2001) Bone marrow stromal cell distribution of basic fibroblast growth factor in chronic myeloid disorders. Haematologica 86:52–57

    CAS  PubMed  Google Scholar 

  82. Basciano PA, Bussel JB (2012) Thrombopoietin-receptor agonists. Curr Opin Hematol 19:392–398

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This paper is issued from thesis of Elahe Khodadi, MSc student of hematology and blood banking. This work was financially supported by grant TH94/1 from vice chancellor for research affairs of Ahvaz Jundishapur University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najmaldin Saki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Authors’ contributions

N.S. conceived the manuscript and revised it; E.Kh., A.A, and M.Sh. wrote the manuscript. S.Sh. and E.Kh. prepared the figure and tables.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodadi, E., Asnafi, A.A., Shahrabi, S. et al. Bone marrow niche in immune thrombocytopenia: a focus on megakaryopoiesis. Ann Hematol 95, 1765–1776 (2016). https://doi.org/10.1007/s00277-016-2703-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-016-2703-1

Keywords

Navigation