Skip to main content
Log in

The prevalence of chromosomal aberrations associated with myelodysplastic syndromes in China

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

This study aims to investigate the prevalence and distribution of diverse chromosomal aberrations associated with myelodysplastic syndromes (MDS) in China. Bone marrow samples were collected from multiple cities in China. Metaphase cytogenetic (MC) analysis and fluorescence in situ hybridization (FISH) were initially used to test chromosomal lesions. Affymetrix CytoScan 750 K genechip platform performed a genome-wide detection of chromosomal aberrations. Chromosomal gain was identified in 76 patients; the most prevalent was trisomy 8(17.9 %). New chromosomal gain was detected on chromosome 9, 19p, and X. Chromosomal loss was detected in 101 patients. The most frequent was loss 5q (21.0 %). Some loss and gain were not identified by MC or FISH but identified by genechip. UPD was solely identified by genechip in 51 patients; the most prevalent were UPD 7q (4.94 %) and UPD 17p (4.32 %). Furthermore, complex chromosomal aberrations were detected in 56 patients. In conclusion, Affymetrix CytoScan 750 K genechip was more precise than MC and FISH in detection of cryptic chromosomal aberrations relevant to MDS. Analysis of the prevalence and distribution of diverse chromosomal aberrations in China may improve strategies for MDS diagnosis and therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Reference

  1. Mohamedali A, Gäken J, Twine NA, Ingram W, Westwood N, Lea NC et al (2007) Prevalence and prognostic significance of allelic imbalance by single-nucleotide polymorphism analysis in low-risk myelodysplastic syndromes. Blood 110(9):3365–3373

    Article  CAS  PubMed  Google Scholar 

  2. Delforge M (2003) Understanding the pathogenesis of myelodysplastic syndromes. Hematol J 4(5):303–309

    Article  PubMed  Google Scholar 

  3. Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Sole F et al (2012) Revised international prognostic scoring system for myelodysplastic syndromes. Blood 120(12):2454–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Arber DA, Hasserjian RP (2015) Reclassifying myelodysplastic syndromes: what’s where in the new WHO and why. Hematology Am Soc Hematol Educ Program 2015:294–298

    PubMed  Google Scholar 

  5. Tiu RV, Gondek LP, O’Keefe CL, Elson P, Huh J, Mohamedali A et al (2011) Prognostic impact of SNP array karyotyping in myelodysplastic syndromes and related myeloid malignancies. Blood 117(17):4552–4560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jonas BA, Greenberg PL (2015) MDS prognostic scoring systems-past, present, and future. Best Pract Res Clin Haematol 28(1):3–13

    Article  PubMed  Google Scholar 

  7. Mecucci C (2014) Diagnosis and prognosis in myelodysplastic syndromes. The impact of cytogenetics. Recenti Prog Med 105(3):110–114

    PubMed  Google Scholar 

  8. Hemmat M, Chen W, Anguiano A, El Naggar M, Racke FK, Jones D et al (2014) Submicroscopic deletion of 5q involving tumor suppressor genes (CTNNA1, HSPA9) and copy neutral loss of heterozygosity associated with TET2 and EZH2 mutations in a case of MDS with normal chromosome and FISH results. Mol Cytogenet 7:35

    Article  PubMed  PubMed Central  Google Scholar 

  9. Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP et al (2010) Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet 86(5):749–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Simons A, Shaffer LG, Hastings RJ (2013) Cytogenetic nomenclature: changes in the ISCN 2013 compared to the 2009 edition. Cytogenet Genome Res 141(1):1–6

  11. Makishima H, Rataul M, Gondek LP, Huh J, Cook JR, Theil KS et al (2010) FISH and SNP-A karyotyping in myelodysplastic syndromes: improving cytogenetic detection of del(5q), monosomy 7, del(7q), trisomy 8 and del(20q). Leuk Res 34(4):447–453

    Article  CAS  PubMed  Google Scholar 

  12. Shin S, Yu N, Choi JR, Jeong S, Lee KA (2015) Routine chromosomal microarray analysis is necessary in Korean patients with unexplained developmental delay/mental retardation/autism spectrum disorder. Ann Lab Med 35(5):510–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gondek LP, Tiu R, Haddad AS, O’Keefe CL, Sekeres MA, Theil KS et al (2007) Single nucleotide polymorphism arrays complement metaphase cytogenetics in detection of new chromosomal lesions in MDS. Leukemia 21(9):2058–2061

    Article  CAS  PubMed  Google Scholar 

  14. Svobodova K, Zemanova Z, Lhotska H, Novakova M, Podskalska L, Belickova M et al (2016) Copy number neutral loss of heterozygosity at 17p and homozygous mutations of TP53 are associated with complex chromosomal aberrations in patients newly diagnosed with myelodysplastic syndromes. Leuk Res 42:7–12

    Article  CAS  PubMed  Google Scholar 

  15. Xiao F, Li Y, Xu W, You L, Yang C, Liu H et al (2016) Efficacy and safety of homoharringtonine plus cytarabine and aclarubicin for patients with myelodysplastic syndrome—RAEB. Oncol Lett 11(1):355–359

    PubMed  Google Scholar 

  16. Lukackova R, Gerykova Bujalkova M, Majerova L, Mladosievicova B (2014) Molecular genetic methods in the diagnosis of myelodysplastic syndromes. A review. Biomed Pap Med 158(3):339–345

    Google Scholar 

  17. Wu C, Pan J, Qiu H, Xue Y, Chen S, Wu Y et al (2015) Microarray CGH analysis of hematological patients with del(20q). Int J Hematol 102(5):617–625

    Article  CAS  PubMed  Google Scholar 

  18. Mori N, Morosetti R, Hoflehner E, Lubbert M, Mizoguchi H, Koeffler HP (2000) Allelic loss in the progression of myelodysplastic syndrome. Cancer Res 60(11):3039–3042

    CAS  PubMed  Google Scholar 

  19. Gondek LP, Tiu R, O’Keefe CL, Sekeres MA, Theil KS, Maciejewski JP (2008) Chromosomal lesions and uniparental disomy detected by SNP arrays in MDS, MDS/MPD, and MDS-derived AML. Blood 111(3):1534–1542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ganster C, Kämpfe D, Jung K, Braulke F, Shirneshan K, Machherndl-Spandl S et al (2015) New data shed light on Y-loss-related pathogenesis in myelodysplastic syndromes. Genes Chromosomes Cancer 54(12):717–724

    Article  CAS  PubMed  Google Scholar 

  21. Saumell S, Florensa L, Luño E, Sanzo C, Cañizo C, Hernández JM et al (2012) Prognostic value of trisomy 8 as a single anomaly and the influence of additional cytogenetic aberrations in primary myelodysplastic syndromes. Br J Haematol 159(3):311–321

    Article  CAS  PubMed  Google Scholar 

  22. Komrokji RS, Padron E, Ebert BL, List AF (2013) Deletion 5q MDS: molecular and therapeutic implications. Best Pract Res Clin Haematol 26(4):365–375

    Article  CAS  PubMed  Google Scholar 

  23. Lapunzina P, Monk D (2011) The consequences of uniparental disomy and copy number neutral loss-of-heterozygosity during human development and cancer. Biol Cell 103(7):303–317

    Article  PubMed  Google Scholar 

  24. Nowak D, Nolte F, Mossner M, Nowak V, Baldus CD, Hopfer O et al (2009) Genome-wide DNA-mapping of CD34+ cells from patients with myelodysplastic syndrome using 500K SNP arrays identifies significant regions of deletion and uniparental disomy. Exp Hematol 37(2):215–224

    Article  CAS  PubMed  Google Scholar 

  25. Platzbecker U, Santini V, Mufti GJ, Haferlach C, Maciejewski JP, Park S et al (2012) Update on developments in the diagnosis and prognostic evaluation of patients with myelodysplastic syndromes (MDS): consensus statements and report from an expert workshop. Leuk Res 36(3):264–270

    Article  PubMed  Google Scholar 

  26. McQuilten ZK, Sundararajan V, Andrianopoulos N, Curtis DJ, Wood EM, Campbell LJ et al (2015) Monosomal karyotype predicts inferior survival independently of a complex karyotype in patients with myelodysplastic syndromes. Cancer 121(17):2892–2899

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was sponsored by the National Natural Science Foundation of China (No. 81372407).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qibin Song or Shiang Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was signed for each patient according to protocols permitted by Institutional Ethics Committee of Wuhan University.

Additional information

Qinyong Hu and Yuxin Chu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Q., Chu, Y., Song, Q. et al. The prevalence of chromosomal aberrations associated with myelodysplastic syndromes in China. Ann Hematol 95, 1241–1248 (2016). https://doi.org/10.1007/s00277-016-2698-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-016-2698-7

Keywords

Navigation