Skip to main content

Advertisement

Log in

miR-17-92 cluster components analysis in Burkitt lymphoma: overexpression of miR-17 is associated with poor prognosis

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Burkitt lymphoma (BL) is an aggressive B cell lymphoma characterized by the reciprocal translocation of the c-Myc gene with immunoglobulin genes. Recently, MYC has been shown to maintain the neoplastic state via the miR-17-92 microRNA cluster that suppresses chromatin regulatory genes and the apoptosis regulator Bim. However, the expression and prognostic impact of miR-17-92 members in pediatric BL (pBL) are unknown. Therefore, we investigated miR-17, miR-19a, miR-19b, miR-20, and miR-92a expression and prognostic impact in a series of 41 pBL samples. In addition, Bim protein expression was evaluated and compared to miR-17, miR-19a, miR-19b, miR-20, and miR-92a levels and patient outcomes. The expression of miR-17-92 members was evaluated by qPCR and Bim protein by immunohistochemistry. Log-rank test was employed to assess prognostic impact. We found that upregulated expression of miR-17 and miR-20a correlates with lack of pro-apoptotic Bim expression. Patients bearing tumors with upregulated miR-17 displayed decreased overall survival (OS), and multivariate analysis revealed that miR-17 was a significant predictor of shortened OS. Using hairpin inhibitors, we showed that inhibition of miR-17 resulted in enhanced Bim expression in a BL cell line overexpressing the miR-17-92 cluster. Our results describe for the first time miR-17, miR-19a, miR-19b, miR-20a, and miR-92a expression profiles in pBL. The prognostic impact of miR-17 should be validated in a larger series, and may provide new therapeutic avenues in the era of anti-miRNA therapy research. Additional functional studies are further required to understand the specific role of miR-17-92 cluster members in BL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dang CV (2012) MYC on the path to cancer. Cell 149(1):22–35. doi:10.1016/j.cell.2012.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dang CV, O’Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F (2006) The c-Myc target gene network. Semin Cancer Biol 16(4):253–264. doi:10.1016/j.semcancer.2006.07.014

    Article  CAS  PubMed  Google Scholar 

  3. O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435(7043):839–843. doi:10.1038/nature03677

    Article  PubMed  Google Scholar 

  4. Baudino TA, Maclean KH, Brennan J, Parganas E, Yang C, Aslanian A et al (2003) Myc-mediated proliferation and lymphomagenesis, but not apoptosis, are compromised by E2f1 loss. Mol Cell 11(4):905–914

    Article  CAS  PubMed  Google Scholar 

  5. Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM et al (2008) Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40(1):43–50. doi:10.1038/ng.2007.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bueno MJ, Gomez de Cedron M, Gomez-Lopez G, Perez de Castro I, Di Lisio L, Montes-Moreno S et al (2011) Combinatorial effects of microRNAs to suppress the Myc oncogenic pathway. Blood 117(23):6255–6266. doi:10.1182/blood-2010-10-315432

    Article  CAS  PubMed  Google Scholar 

  7. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233. doi:10.1016/j.cell.2009.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fernando TR, Rodriguez-Malave NI, Rao DS (2012) MicroRNAs in B cell development and malignancy. J Hematol Oncol 5:7. doi:10.1186/1756-8722-5-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lawrie CH (2008) MicroRNA expression in lymphoid malignancies: new hope for diagnosis and therapy? J Cell Mol Med 12(5A):1432–1444. doi:10.1111/j.1582-4934.2008.00399.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Musilova K, Mraz M (2015) MicroRNAs in B-cell lymphomas: how a complex biology gets more complex. Leukemia 29(5):1004–1017. doi:10.1038/leu.2014.351

    Article  CAS  PubMed  Google Scholar 

  11. Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A et al (2005) Clustering and conservation patterns of human microRNAs. Nucleic Acids Res 33(8):2697–2706. doi:10.1093/nar/gki567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tanzer A, Stadler PF (2004) Molecular evolution of a microRNA cluster. J Mol Biol 339(2):327–335. doi:10.1016/j.jmb.2004.03.065

    Article  CAS  PubMed  Google Scholar 

  13. Olive V, Li Q, He L (2013) miR-17-92: a polycistronic oncomir with pleiotropic functions. Immunol Rev 253(1):158–166. doi:10.1111/imr.12054

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838. doi:10.1038/nature03702

    Article  CAS  PubMed  Google Scholar 

  15. Xiao C, Srinivasan L, Calado DP, Patterson HC, Zhang B, Wang J et al (2008) Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol 9(4):405–414. doi:10.1038/ni1575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jin HY, Oda H, Lai M, Skalsky RL, Bethel K, Shepherd J et al (2013) MicroRNA-17∼92 plays a causative role in lymphomagenesis by coordinating multiple oncogenic pathways. EMBO J 32(17):2377–2391. doi:10.1038/emboj.2013.178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ et al (2008) Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132(5):875–886. doi:10.1016/j.cell.2008.02.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC, Croce CM (1982) Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci U S A 79(24):7824–7827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Robertus JL, Kluiver J, Weggemans C, Harms G, Reijmers RM, Swart Y et al (2010) MiRNA profiling in B non-Hodgkin lymphoma: a MYC-related miRNA profile characterizes Burkitt lymphoma. Br J Haematol 149(6):896–899. doi:10.1111/j.1365-2141.2010.08111.x

    Article  CAS  PubMed  Google Scholar 

  20. Li Y, Choi PS, Casey SC, Dill DL, Felsher DW (2014) MYC through miR-17-92 suppresses specific target genes to maintain survival, autonomous proliferation, and a neoplastic state. Cancer Cell 26(2):262–272. doi:10.1016/j.ccr.2014.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Campo E, Swerdlow SH, Harris NL, Pileri S, Stein H, Jaffe ES (2011) The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood 117(19):5019–5032. doi:10.1182/blood-2011-01-293050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Murphy SB (1980) Classification, staging and end results of treatment of childhood non-Hodgkin’s lymphomas: dissimilarities from lymphomas in adults. Semin Oncol 7(3):332–339

    CAS  PubMed  Google Scholar 

  23. Klumb CE, Schramm MT, De Resende LM, Carrico MK, Coelho AM, de Meis E et al (2004) Treatment of children with B-cell non-Hodgkin’s lymphoma in developing countries: the experience of a single center in Brazil. J Pediatr Hematol Oncol 26(7):462–468

    Article  PubMed  Google Scholar 

  24. Klumb CE, Hassan R, De Oliveira DE, De Resende LM, Carrico MK, De Almeida DJ et al (2004) Geographic variation in Epstein-Barr virus-associated Burkitt’s lymphoma in children from Brazil. Int J Cancer: Journal international du cancer 108(1):66–70. doi:10.1002/ijc.11443

    Article  PubMed  Google Scholar 

  25. Queiroga EM, Gualco G, Weiss LM, Dittmer DP, Araujo I, Klumb CE et al (2008) Burkitt lymphoma in Brazil is characterized by geographically distinct clinicopathologic features. Am J Clin Pathol 130(6):946–956. doi:10.1309/AJCP64YOHAWLUMPK

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25(4):402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  27. Psathas JN, Doonan PJ, Raman P, Freedman BD, Minn AJ, Thomas-Tikhonenko A (2013) The Myc-miR-17-92 axis amplifies B-cell receptor signaling via inhibition of ITIM proteins: a novel lymphomagenic feed-forward loop. Blood 122(26):4220–4229. doi:10.1182/blood-2012-12-473090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kaplan EL, Meier P (1958) Nonparametric-estimation from incomplete observations. J Am Stat Assoc 53(282):457–481. doi:10.2307/2281868

    Article  Google Scholar 

  29. Majello B, Perini G (2015) Myc proteins in cell biology and pathology. Biochim Biophys Acta 1849(5):467–468. doi:10.1016/j.bbagrm.2014.12.006

    Article  CAS  PubMed  Google Scholar 

  30. Yu J, Wang F, Yang GH, Wang FL, Ma YN, Du ZW et al (2006) Human microRNA clusters: genomic organization and expression profile in leukemia cell lines. Biochem Biophys Res Commun 349(1):59–68. doi:10.1016/j.bbrc.2006.07.207

    Article  CAS  PubMed  Google Scholar 

  31. Ota A, Tagawa H, Karnan S, Tsuzuki S, Karpas A, Kira S et al (2004) Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res 64(9):3087–3095

    Article  CAS  PubMed  Google Scholar 

  32. Tagawa H, Seto M (2005) A microRNA cluster as a target of genomic amplification in malignant lymphoma. Leukemia 19(11):2013–2016. doi:10.1038/sj.leu.2403942

    Article  CAS  PubMed  Google Scholar 

  33. Sylvestre Y, De Guire V, Querido E, Mukhopadhyay UK, Bourdeau V, Major F et al (2007) An E2F/miR-20a autoregulatory feedback loop. J Biol Chem 282(4):2135–2143. doi:10.1074/jbc.M608939200

    Article  CAS  PubMed  Google Scholar 

  34. Olive V, Jiang I, He L (2010) mir-17-92, a cluster of miRNAs in the midst of the cancer network. Int J Biochem Cell Biol 42(8):1348–1354. doi:10.1016/j.biocel.2010.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S et al (2005) A microRNA polycistron as a potential human oncogene. Nature 435(7043):828–833. doi:10.1038/nature03552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schmitz R, Young RM, Ceribelli M, Jhavar S, Xiao W, Zhang M et al (2012) Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature 490(7418):116–120. doi:10.1038/nature11378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Iqbal J, Shen Y, Huang X, Liu Y, Wake L, Liu C et al (2015) Global microRNA expression profiling uncovers molecular markers for classification and prognosis in aggressive B-cell lymphoma. Blood 125(7):1137–1145. doi:10.1182/blood-2014-04-566778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Olive V, Sabio E, Bennett MJ, De Jong CS, Biton A, McGann JC et al (2013) A component of the mir-17-92 polycistronic oncomir promotes oncogene-dependent apoptosis. eLife 2, e00822. doi:10.7554/eLife.00822

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lai M, Xiao C (2015) Functional interactions among members of the miR-17-92 cluster in lymphocyte development, differentiation and malignant transformation. Int. Immunol. doi:10.1016/j.intimp.2015.03.041.

  40. Tsuchida A, Ohno S, Wu W, Borjigin N, Fujita K, Aoki T et al (2011) miR-92 is a key oncogenic component of the miR-17-92 cluster in colon cancer. Cancer Sci 102(12):2264–2271. doi:10.1111/j.1349-7006.2011.02081.x

    Article  CAS  PubMed  Google Scholar 

  41. Egle A, Harris AW, Bouillet P, Cory S (2004) Bim is a suppressor of Myc-induced mouse B cell leukemia. Proc Natl Acad Sci U S A 101(16):6164–6169. doi:10.1073/pnas.0401471101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mestre-Escorihuela C, Rubio-Moscardo F, Richter JA, Siebert R, Climent J, Fresquet V et al (2007) Homozygous deletions localize novel tumor suppressor genes in B-cell lymphomas. Blood 109(1):271–280. doi:10.1182/blood-2006-06-026500

    Article  CAS  PubMed  Google Scholar 

  43. Inomata M, Tagawa H, Guo YM, Kameoka Y, Takahashi N, Sawada K (2009) MicroRNA-17-92 down-regulates expression of distinct targets in different B-cell lymphoma subtypes. Blood 113(2):396–402. doi:10.1182/blood-2008-07-163907

    Article  CAS  PubMed  Google Scholar 

  44. Psathas JN, Thomas-Tikhonenko A (2014) MYC and the art of microRNA maintenance. Cold Spring Harbor perspectives in medicine. 4(8). doi:10.1101/cshperspect.a014175.

  45. Tagawa H, Karnan S, Suzuki R, Matsuo K, Zhang X, Ota A et al (2005) Genome-wide array-based CGH for mantle cell lymphoma: identification of homozygous deletions of the proapoptotic gene BIM. Oncogene 24(8):1348–1358. doi:10.1038/sj.onc.1208300

    Article  CAS  PubMed  Google Scholar 

  46. Anderton E, Yee J, Smith P, Crook T, White RE, Allday MJ (2008) Two Epstein-Barr virus (EBV) oncoproteins cooperate to repress expression of the proapoptotic tumour-suppressor Bim: clues to the pathogenesis of Burkitt’s lymphoma. Oncogene 27(4):421–433. doi:10.1038/sj.onc.1210668

    Article  CAS  PubMed  Google Scholar 

  47. Vereide DT, Sugden B (2011) Lymphomas differ in their dependence on Epstein-Barr virus. Blood 117(6):1977–1985. doi:10.1182/blood-2010-05-285791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Leventaki V, Rodic V, Tripp SR, Bayerl MG, Perkins SL, Barnette P et al (2012) TP53 pathway analysis in paediatric Burkitt lymphoma reveals increased MDM4 expression as the only TP53 pathway abnormality detected in a subset of cases. Br J Haematol 158(6):763–771. doi:10.1111/j.1365-2141.2012.09243.x

    Article  CAS  PubMed  Google Scholar 

  49. Pienkowska-Grela B, Rymkiewicz G, Grygalewicz B, Woroniecka R, Krawczyk P, Czyz-Domanska K et al (2011) Partial trisomy 11, dup(11)(q23q13), as a defect characterizing lymphomas with Burkitt pathomorphology without MYC gene rearrangement. Med Oncol 28(4):1589–1595. doi:10.1007/s12032-010-9614-0

    Article  PubMed  Google Scholar 

  50. Salaverria I, Martin-Guerrero I, Wagener R, Kreuz M, Kohler CW, Richter J et al (2014) A recurrent 11q aberration pattern characterizes a subset of MYC-negative high-grade B-cell lymphomas resembling Burkitt lymphoma. Blood 123(8):1187–1198. doi:10.1182/blood-2013-06-507996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to all the clinicians who followed the patients included in the study. This work was supported by grants from Instituto Nacional de Ciência e Tecnologia (INCT) para Controle do Câncer: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) 573806/2008-0/FAPERJ E26/170.026/2008, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) E-26/110.238/2014—PPSUS, Programa de Oncobiologia/Fundação do Câncer, and FAPERJ E-26/110.375/2014. SWISS-BRIDGE Foundation, sub-project 1B/2014. MCR and RSF had a scholarship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES-PDSE) and Ministério da Saúde/INCA, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudete Esteves Klumb.

Ethics declarations

The study was approved by the institutional ethics committee (registration number 18/09), in accordance with the Declaration of Helsinki.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robaina, M.C., Faccion, R.S., Mazzoccoli, L. et al. miR-17-92 cluster components analysis in Burkitt lymphoma: overexpression of miR-17 is associated with poor prognosis. Ann Hematol 95, 881–891 (2016). https://doi.org/10.1007/s00277-016-2653-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-016-2653-7

Keywords

Navigation