Skip to main content
Log in

Non-invasive prenatal diagnosis of β-thalassemia by detection of the cell-free fetal DNA in maternal circulation: a systematic review and meta-analysis

  • Review Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

The discovery of fetal DNA (f-DNA) opens the possibility of early non-invasive procedure for detection of paternally inherited mutation of beta-thalassemia. Since 2002, some studies have examined the sensitivity and specificity of this method for detection of paternally inherited mutation of thalassemia in pregnant women at risk of having affected babies. We conducted a systematic review of published articles that evaluated using this method for early detection of paternally inherited mutation in maternal plasma. A sensitive search of multiple databases was done in which nine studies met our inclusion criteria. The sensitivity and specificity was 99 and 99 %, respectively. The current study found that detection of paternally inherited mutation of thalassemia using analysis of cell-free fetal DNA is highly accurate. This method could replace conventional and invasive methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sodani P, Gaziev D, Polchi P et al (2004) New approach for bone marrow transplantation in patients with class 3 thalassemia aged younger than 17 years. Blood 104:1201–1203

    Article  CAS  PubMed  Google Scholar 

  2. Modell B, Khan M, Darlison M, Westwood M, Ingram D, Pennell D (2008) Improved survival of thalassaemia major in the UK and relation to T2* cardiovascular magnetic resonance. J Cardiovasc Magn Reson 10:42

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sadelain M (2006) Recent advances in globin gene transfer for the treatment of beta-thalassemia and sickle cell anemia. Curr Opin Hematol 13(3):142–148

    Article  CAS  PubMed  Google Scholar 

  4. Kosaryan M, Vahidshahi K, Siami R, Nazari M, Karami H, Ehteshami S (2009) Knowledge, attitude and practice of reproductive behavior in Iranian minor thalassemia couples. Saudi Med J 30(6):835–883

    PubMed  Google Scholar 

  5. Psihogios V, Rodda C, Reid E, Clark M, Clarke C, Bowden D (2002) Reproductive health in individual with homozygous beta-thalassemia: knowledge, attitude, and behaviour. Fertil Steril 77(1):119–127

    Article  PubMed  Google Scholar 

  6. Modell B, Samavat A (2004) Iranian national thalassemia screening program. BMJ 329:1134–1137

    Article  PubMed  PubMed Central  Google Scholar 

  7. Swanson A, Sehnert AJ, Bhatt S (2013) Non-invasive prenatal testing: technologies, clinical assays and implementation strategies for women’s healthcare practitioners. Curr Genet Med Rep 1(2):113–121

    Article  PubMed  PubMed Central  Google Scholar 

  8. Papageorgiou EA, Patsalis PC (2012) Non-invasive prenatal diagnosis of aneuploidies: new technologies and clinical applications. Genome Med 4(5):46

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tan EM, Schur PH, Carr RI, Kunkel HG (1966) Deoxyribonucleic acid (DNA) and antibodies to DNA in the serum of patients with systemic lupus erythematosus. J Clin Invest 45:1732–1740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Butt AN, Shalchi Z, Hamaoui K et al (2006) Circulating nucleic acids and diabetic complications. Ann N Y Acad Sci 1075:1–9

    Article  PubMed  Google Scholar 

  11. Rainer TH, Wong LKS, Lam W et al (2003) Prognostic use of circulating plasma nucleic acid concentrations in patients with acute stroke. Clin Chem 49:562–569

    Article  CAS  PubMed  Google Scholar 

  12. Dennis LYM, Rainer Timothy H, Chan Lisa YS, Hjelm N, Cocks R (2000) Plasma DNA as a prognostic marker in trauma patients. Clin Chem 6:3319–3323

    Google Scholar 

  13. Margraf S, Logters T, Reipen J (2008) Neutrophil-derived circulating free DNA (cf-DNA/NETS): a potential prognostic marker for post traumatic development of inflammatory second hit and sepsis. Shock 30(4):352–358

    Article  CAS  PubMed  Google Scholar 

  14. Alp A, Us D, Hascelik G (2004) Comparison of manual and automated (MagNA Pure) nucleic acid isolation methods in molecular diagnosis of HIV infections. Mikrobiyol Bul 38:77–83

    CAS  PubMed  Google Scholar 

  15. Hibi K, Robinson CR, Booker S (1998) Molecular detection of genetic alterations in the serum of colorectal cancer patients. Cancer Res 58:1405–1407

    CAS  PubMed  Google Scholar 

  16. Swarup V, Rajeswari M (2007) Circulating (cell-free) nucleic acids—a promising, non-invasive tool for early detection of several human diseases. FEBS Lett 581(5):795–799

    Article  CAS  PubMed  Google Scholar 

  17. Lo Y, Corbetta N, Chamberlain PF, Rai V, Sargent L, Redman C (1997) Presence of fetal DNA in maternal plasma and serum. Lancet 350(9076):485–487

    Article  CAS  PubMed  Google Scholar 

  18. Hahn S, Rusterholz C, Hösli I, Lapaire O (2011) Cell-free nucleic acids as potential markers for preeclampsia. Placenta 32(1):s17–s20

    Article  CAS  PubMed  Google Scholar 

  19. Anthony R, Gregg SJ, Gross RG (2013) ACMG statement on noninvasive prenatal screening for fetal aneuploidy. Gene Med 15(5):395–398

    Article  Google Scholar 

  20. Tynan JA, Angkachatchai V, Ehrich M (2011) Multiplexed analysis of circulating cell-free fetal nucleic acids for noninvasive prenatal diagnostic RHD testing. AJOG 204(3):251.e1–251.e6

    Article  Google Scholar 

  21. Lo D, Zhang J, Leung T, Lau T, Chang A, Hjelm N (1999) Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet 64:218–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chiu RW, Cantor CR, Lo Y (2009) Non-invasive prenatal diagnosis by single molecule counting technologies. Trends Genet 25(7):324–331

    Article  CAS  PubMed  Google Scholar 

  23. Hill M, Barrett AN, White H, Chitty LS (2012) Uses of cell free fetal DNA in maternal circulation. Best Pract Res Cl Ob 26(5):639–654

    Article  Google Scholar 

  24. Hahn S, Lapaire O, Tercanli S, Kolla V, Hösli I (2011) Determination of fetal chromosome aberrations from fetal DNA in maternal blood: has the challenge finally been met? Expert Rev Mol Med 13(1):e16

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wright CF, Burton H (2009) The use of cell-free fetal nucleic acids in maternal blood for non-invasive prenatal diagnosis. Hum Reprod Update 15(1):139–151

    Article  CAS  PubMed  Google Scholar 

  26. Papasavva T, van IJcken WFJ, Kockx CEM (2013) Next generation sequencing of SNPs for non-invasive prenatal diagnosis: challenges and feasibility as illustrated by an application to b-thalassemia. Eur J Hum Genet 21:1403–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ehrich M, Deciu C, Zwiefelhofer T et al (2011) Noninvasive detection of fetal trisomy 21 by sequencing of DNA in maternal blood: a study in a clinical setting. Am J Obstet Gyneacology 204(3):205e1–205e11

    Article  Google Scholar 

  28. Lam K-WG, Jiang P, Liao GJ et al (2012) Noninvasive prenatal diagnosis of monogenic diseases by targeted massively parallel sequencing of maternal plasma: application to β-thalassemia. Clin Chem 58(10):1467–1475

    Article  CAS  PubMed  Google Scholar 

  29. Khorram Khorshid HR, Zargari M, Sadeghi MR, Edalatkhah H, Shahhosseny M, Kamali K (2013) Early fetal gender determination using real-time PCR analysis of cell-free fetal DNA during 6th-10th weeks of gestation. Acta Medica Iranica 51(4):209–214

    PubMed  Google Scholar 

  30. Cochrane Methods Working Group (1996) Working Group on Systematic Review of Screening and Diagnostic Tests. Recommended Methods :16–2

  31. Wright CF, Wei Y, Higgins JP, Sagoo GS (2012) Non-invasive prenatal diagnostic test accuracy for fetal sex using cell-free DNA a review and meta-analysis. BMC Res Notes 5(1):476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tong Y-K, Lo Y (2006) Diagnostic developments involving cell-free (circulating) nucleic acids. Clin Chim Acta 363(1):187–196

    Article  CAS  PubMed  Google Scholar 

  33. Colah R, Gorakshakar A, Nadkarni A (2011) Invasive & non-invasive approaches for prenatal diagnosis of haemoglobinopathies: experiences from India. Indian J Med Res 134(4):552

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zimmermann BG, Grill S, Holzgreve W, Zhong XY, Jackson LG, Hahn S (2008) Digital PCR: a powerful new tool for noninvasive prenatal diagnosis? Prenat Diagn 28(12):1087–1093

    Article  CAS  PubMed  Google Scholar 

  35. Babkina N, Graham JM Jr (2014) New genetic testing in prenatal diagnosis. Semin Fetal Neonatal Med 19(3):214–219

    Article  PubMed  Google Scholar 

  36. Alberry M, Soothill P, editors (2008) Non-invasive prenatal diagnosis: implications for antenatal diagnosis and management of high-risk pregnancies. Semin Fetal Neonatal Med 13(2): 84–90

  37. Lucy Raymond F, Whittaker J, Jenkins L, Lench N, Chitty LS (2010) Molecular prenatal diagnosis: the impact of modern technologies. Prenat Diagn 30(7):674–681

    Article  PubMed  Google Scholar 

  38. Hahn S, Zhong XY, Holzgreve W (2008) Recent progress in non-invasive prenatal diagnosis. Semin Fetal Neonatal Med 13(2):57–62

    Article  PubMed  Google Scholar 

  39. Cousens NE, Gaff CL, Metcalfe SA, Delatycki MB (2010) Carrier screening for beta-thalassaemia: a review of international practice. Eur J Hum Genet 18(10):1077–1083

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chiu RW, Lau TK, Leung TN, Chow KC, Chui DH, Lo Y (2002) Prenatal exclusion of β thalassaemia major by examination of maternal plasma. Lancet 360(9338):998–1000

    Article  PubMed  Google Scholar 

  41. Ding C, Chiu RW, Lau TK et al (2004) MS analysis of single-nucleotide differences in circulating nucleic acids: application to noninvasive prenatal diagnosis. Proc Natl Acad Sci U S A 101(29):10762–10767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li Y, Di Naro E, Vitucci A, Zimmermann B, Holzgreve W, Hahn S (2005) Detection of paternally inherited fetal point mutations for β-thalassemia using size-fractionated cell-free DNA in maternal plasma. JAMA 293(7):843–849

    Article  CAS  PubMed  Google Scholar 

  43. Papasavva T, Kalakoutis G, Kalikas I et al (2006) Noninvasive prenatal diagnostic assay for the detection of β‐thalassemia. Ann NY Acad Sci 1075(1):148–153

    Article  CAS  PubMed  Google Scholar 

  44. Tungwiwat W, Fucharoen G, Fucharoen S, Ratanasiri T, Sanchaisuriya K, Sae-Ung N (2007) Application of maternal plasma DNA analysis for noninvasive prenatal diagnosis of Hb E-β-thalassemia. Transl Res 150(5):319–325

    Article  CAS  PubMed  Google Scholar 

  45. Lazaros L, Hatzi E, Bouba I et al (2008) Non-invasive first-trimester detection of paternal beta-globin gene mutations and polymorphisms as predictors of thalassemia risk at chorionic villous sampling. Eur J Obstet Gynecol Reprod Biol 140(1):17–20

    Article  CAS  PubMed  Google Scholar 

  46. Papasavva T, Kalikas I, Kyrri A, Kleanthous M (2008) Arrayed primer extension for the noninvasive prenatal diagnosis of β‐thalassemia based on detection of single nucleotide polymorphisms. Ann NY Acad Sci 1137(1):302–308

    Article  CAS  PubMed  Google Scholar 

  47. Galbiati S, Foglieni B, Travi M et al (2008) Peptide-nucleic acid-mediated enriched polymerase chain reaction as a key point for non-invasive prenatal diagnosis of β-thalassemia. Haematologica 93(4):610–614

    Article  CAS  PubMed  Google Scholar 

  48. Chan K, Yam I, Leung K, Tang M, Chan T, Chan V (2010) Detection of paternal alleles in maternal plasma for non-invasive prenatal diagnosis of β-thalassemia: a feasibility study in southern Chinese. Eur J Obstet Gynecol Reprod Biol 150(1):28–33

    Article  CAS  PubMed  Google Scholar 

  49. Lo Y, Chan K, Sun H et al (2010) Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci Transl Med 2(61):61–91

    Article  Google Scholar 

  50. Galbiati S, Brisci A, Damin F et al (2012) Fetal DNA in maternal plasma: a noninvasive tool for prenatal diagnosis of beta-thalassemia. Expert Opin Biol Th 12(S1):S181–S187

    Article  CAS  Google Scholar 

  51. Guang-hua LI, Ka-bin R, Yan-fei L et al (2011) Prenatal diagnosis of β-thalassaemia using cell-free fetal DNA in maternal plasma. J South Med Univ 31(8):1437–1439

    Google Scholar 

  52. Phylipsen M, Yamsri S, Treffers EE et al (2012) Non‐invasive prenatal diagnosis of beta‐thalassemia and sickle‐cell disease using pyrophosphorolysis‐activated polymerization and melting curve analysis. Prenat Diagn 32(6):578–587

    Article  CAS  PubMed  Google Scholar 

  53. Prajantasen T, Fucharoen S, Fucharoen G, Siriratmanawong N, Pinmuang-ngam C (2013) Prenatal and post-natal screening of β-thalassemia and hemoglobin E genes in Thailand using denaturing high performance liquid chromatography. Mol Biol Rep 40(4):3173–3179

    Article  CAS  PubMed  Google Scholar 

  54. Papasavva TE, Lederer CW, Traeger‐Synodinos J et al (2013) A minimal set of SNPs for the noninvasive prenatal diagnosis of β‐thalassaemia. Ann Hum Genet 77(2):115–124

    Article  CAS  PubMed  Google Scholar 

  55. Dwamena B (2007) MIDAS: Stata module for meta-analytical integration of diagnostic test accuracy studies. Statistical Software Components. Boston College Department of Economics

  56. Irwig L, Macaskill P, Glasziou P, Fahey M (1995) Meta-analytic methods for diagnostic test accuracy. J Clin Epidemiol 48(1):119–130

    Article  CAS  PubMed  Google Scholar 

  57. Tsui N, Kadir R, Chan A (2011) Noninvasive prenatal diagnosis of hemophilia by microfluidics digital PCR analysis of maternal plasma DNA. Blood 117(13):3684–3691

    Article  CAS  PubMed  Google Scholar 

  58. Gudran P, Mingshih L (2004) Principle and application of digital PCR. Expert Rev Mol Diagn 4(1):41–47

    Article  Google Scholar 

Download references

Acknowledgments

Many thanks for all persons who help us for the preparation this review paper. The funding of this research is supported by Mazandaran University of Medical Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrnoush Kosaryan.

Ethics declarations

Funding

This study was funded by Mazandaran University of Medical Science.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zafari, M., Kosaryan, M., Gill, P. et al. Non-invasive prenatal diagnosis of β-thalassemia by detection of the cell-free fetal DNA in maternal circulation: a systematic review and meta-analysis. Ann Hematol 95, 1341–1350 (2016). https://doi.org/10.1007/s00277-016-2620-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-016-2620-3

Keywords

Navigation