Skip to main content

Advertisement

Log in

Tyrosine kinase inhibitors in Ph+ acute lymphoblastic leukaemia: facts and perspectives

  • Review Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Two tyrosine kinase inhibitors (TKIs), imatinib and dasatinib, are registered for the treatment of Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukaemia (ALL) in adults. Other two TKIs (nilotinib and ponatinib) have been tested in the second-line, can offer an alternative in the patients who fail the first-line, and can acquire a role also in the first-line. Here, we provide a summary of the reports of TKIs, used alone, and in combination with chemotherapy. TKIs are very effective alone and with corticosteroids and are likely to improve substantially the outcome when they are combined with standard or dose-adapted chemotherapy. While the complete haematologic remission rate is always very high, close to 100 %, the cytogenetic and molecular remission rates are lower, so that TKIs are still considered as a complement to chemotherapy and as a bridge to allogeneic stem cell transplantation (allo-SCT). However, many patients relapse before transplant, and many patients still relapse, even if they have been submitted to allo-SCT. A proper use of TKIs, the introduction of ponatinib, and of “new generation” TKIs should improve further on the outcome of Ph+ ALL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ottmann OG and Pfeifer H (2009) Management of Philadelphia chromosome-positive acute lymphoblastic leukemia. Hematology, ASH Educational Book 371–381

  2. Götz G, Weh HJ, Walter TA et al (1992) Clinical and prognostic significance of the Philadelphia chromosome in adult patients with acute lymphoblastic leukemia. Ann Hematol 64(2):97–100

    Article  PubMed  Google Scholar 

  3. Larson RA, Dodge RK, Burns CP et al (1995) A five-drug remission induction regimen with intensive consolidation for adults with acute lymphoblastic leukemia: cancer and leukemia group B study 8811. Blood 85(8):2025–37

    CAS  PubMed  Google Scholar 

  4. Cytogenetic abnormalities in adult acute lymphoblastic leukemia: correlations with hematologic findings outcome. A Collaborative Study of the Group Français de Cytogénétique Hématologique (1996) Blood 87(8):3135–42

  5. Wetzler M, Dodge RK, Mrózek K et al (1999) Prospective karyotype analysis in adult acute lymphoblastic leukemia: the cancer and leukemia Group B experience. Blood 93(11):3983–93

    CAS  PubMed  Google Scholar 

  6. Thomas X, Danaïla C, Le QH et al (2001) Long-term follow-up of patients with newly diagnosed adult acute lymphoblastic leukemia: a single institution experience of 378 consecutive patients over a 21-year period. Leukemia 15(12):1811–22

    Article  CAS  PubMed  Google Scholar 

  7. Gleissner B, Gökbuget N, Bartram CR et al (2002) Leading prognostic relevance of the BCR-ABL translocation in adult acute B-lineage lymphoblastic leukemia: a prospective study of the German Multicenter Trial Group and confirmed polymerase chain reaction analysis. Blood 99(5):1536–43

    Article  CAS  PubMed  Google Scholar 

  8. Annino L, Vegna ML, Camera A et al (2002) Treatment of adult acute lymphoblastic leukemia (ALL): long-term follow-up of the GIMEMA ALL 0288 randomized study. Blood 99(3):863–71

    Article  CAS  PubMed  Google Scholar 

  9. Takeuchi J, Kyo T, Naito K et al (2002) Induction therapy by frequent administration of doxorubicin with four other drugs, followed by intensive consolidation and maintenance therapy for adult acute lymphoblastic leukemia: the JALSG-ALL93 study. Leukemia 16(7):1259–66

    Article  CAS  PubMed  Google Scholar 

  10. Kantarjian H, Thomas D, O’Brien S et al (2004) Long-term follow-up results of hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone (Hyper-CVAD), a dose-intensive regimen, in adult acute lymphocytic leukemia. Cancer 101(12):2788–801

    Article  CAS  PubMed  Google Scholar 

  11. Moorman AV, Harrison CJ, Buck GA et al (2007) Karyotype is an independent prognostic factor in adult acute lymphoblastic leukemia (ALL): analysis of cytogenetic data from patients treated on the Medical Research Council (MRC) UKALLXII/Eastern Cooperative Oncology Group (ECOG) 2993 trial. Blood 109(8):3189–97

    Article  CAS  PubMed  Google Scholar 

  12. Pullarkat V, Slovak ML, Kopecky KJ et al (2008) Impact of cytogenetics on the outcome of adult acute lymphoblastic leukemia: results of Southwest Oncology Group 9400 study. Blood 111(5):2563–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sive JI, Buck G, Fielding A et al (2012) Outcomes in older adults with acute lymphoblastic leukaemia (ALL): results from the international MRC UKALL XII/ECOG2993 trial. Br J Haematol 157(4):463–71

    Article  PubMed  PubMed Central  Google Scholar 

  14. Forman SJ, O’Donnell MR, Nademanee AP et al (1987) Bone marrow transplantation for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood 70(2):587–8

    CAS  PubMed  Google Scholar 

  15. Barrett AJ, Horowitz MM, Ash RC et al (1992) Bone marrow transplantation for Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood 79(11):3067–70

    CAS  PubMed  Google Scholar 

  16. Chao NJ, Blume KG, Forman SJ et al (1995) Long-term follow-up of allogeneic bone marrow recipients for Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood 85(11):3353–4

    CAS  PubMed  Google Scholar 

  17. Snyder DS, Nademanee AP, O’Donnell MR et al (1999) Long-term follow-up of 23 patients with Philadelphia chromosome-positive acute lymphoblastic leukemia treated with allogeneic bone marrow transplant in first complete remission. Leukemia 13(12):2053–8

    Article  CAS  PubMed  Google Scholar 

  18. Cornelissen JJ, Carston M, Kollman C et al (2001) Unrelated marrow transplantation for adult patients with poor-risk acute lymphoblastic leukemia: strong graft-versus-leukemia effect and risk factors determining outcome. Blood 97(6):1572–7

    Article  CAS  PubMed  Google Scholar 

  19. Dombret H, Gabert J, Boiron JM et al (2002) Outcome of treatment in adults with Philadelphia chromosome-positive acute lymphoblastic leukemia—results of the prospective multicenter LALA-94 trial. Blood 100(7):2357–66

    Article  CAS  PubMed  Google Scholar 

  20. Espérou H, Boiron JM, Cayuela JM et al (2003) A potential graft-versus-leukemia effect after allogeneic hematopoietic stem cell transplantation for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: results from the French Bone Marrow Transplantation Society. Bone Marrow Transplant 31(10):909–18

    Article  PubMed  Google Scholar 

  21. Yanada M, Naoe T, Iida H et al (2005) Myeloablative allogeneic hematopoietic stem cell transplantation for Philadelphia chromosome-positive acute lymphoblastic leukemia in adults: significant roles of total body irradiation and chronic graft-versus-host disease. Bone Marrow Transplant 36(10):867–72

    Article  CAS  PubMed  Google Scholar 

  22. Laport GG, Alvarnas JC, Palmer JM et al (2008) Long-term remission of Philadelphia chromosome-positive acute lymphoblastic leukemia after allogeneic hematopoietic cell transplantation from matched sibling donors: a 20-year experience with the fractionated total body irradiation-etoposide regimen. Blood 112(3):903–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fielding AK, Rowe JM, Richards SM et al (2009) Prospective outcome data on 267 unselected adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia confirms superiority of allogeneic transplantation over chemotherapy in the pre-imatinib era: results from the International ALL Trial MRC UKALLXII/ECOG2993. Blood 113(19):4489–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Druker BJ, Sawyers CL, Kantarjian H et al (2001) Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 344:1038–1042

    Article  CAS  PubMed  Google Scholar 

  25. Ottmann OG, Druker BJ, Sawyers CL et al (2002) A phase 2 study of imatinib in patients with relapsed or refractory Philadelphia chromosome-positive acute lymphoid leukemias. Blood 100:1965–1971

    Article  CAS  PubMed  Google Scholar 

  26. Gruber F, Mustjoki S, Porkka K (2009) Impact of tyrosine kinase inhibitors on patient outcomes in Philadelphia chromosome-positive acute lymphoblastic leukaemia. Br J Haematol 145:581–597

    Article  CAS  PubMed  Google Scholar 

  27. Jabbour E, O’Brien S, Konopleva M, Kantarjian H (2015) New insights into the pathophysiology and therapy of adult acute lymphoblastic leukemia. Cancer. doi:10.1002/cncr.29383

    Google Scholar 

  28. Fielding AK (2015) Treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia in adults: a broader range of options, improved outcomes, and more therapeutic dilemmas. ASCO Educational Book, e352-359

  29. Papayannidis C, Fazi P, Piciocchi A, et al. (2012) Treating Ph+ acute lymphoblastic leukemia (ALL) in the elderly: the sequence of two tyrosine kinase inhibitors (TKI) (nilotinib and imatinib) does not prevent mutations and relapse. Proc Annual Meeting ASH, Blood 120:21, Abstract 2601

  30. Sartor C, Papayannidis C, Piciocchi A, et al. (2015) Sequential use of first and second generation TKIs are effective on prolonged overall survival in elderly population affected by Ph+ acute lymphoblastic leukemia: the GIMEMA experience. Proc Annual AACR Meeting, Abstract 5491

  31. Thomas DA, Faderl S, Cortes J, et al. (2004). Treatment of Philadelphia chromosome-positive acute lymphocytic leukemia with hyper-CVAD and imatinib mesylate. Blood 2004;103:4396–4407.

  32. Thomas DA, Kantarjian HM, Cortes JE, et al. (2008) Out- come after frontline therapy with the hyper-CVAD and imatinib mesylate regimen for adults with de novo or minimally treated Philadelphia (Ph) positive acute lymphoblastic leukemia (ALL). Proc ASCO Annual Meeting 26, Abstract 7019

  33. Lee KH, Lee JH, Choi SJ et al (2005) Clinical effect of imatinib added to intensive combination chemotherapy for newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia. Leukemia 19:1509–1516

    Article  CAS  PubMed  Google Scholar 

  34. Yanada M, Takeuchi J, Sugiura I et al (2006) High complete remission rate and promising outcome by combination of imatinib and chemotherapy for newly diagnosed BCR-ABL-positive acute lymphoblastic leukemia: a phase II study by the Japan Adult Leukemia Study Group. J Clin Oncol 24:460–466

    Article  CAS  PubMed  Google Scholar 

  35. Yanada M, Takeuchi J, Sugiura I et al (2008) Karyotype at diagnosis is the major prognostic factor predicting relapse-free survival for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia treated with imatinib-combined chemotherapy. Haematologica 93:287–290

    Article  PubMed  Google Scholar 

  36. Wassmann B, Pfeifer H, Goekbuget N et al (2006) Alternating versus concurrent schedules of imatinib and chemotherapy as front-line therapy for Philadelphia-positive acute lymphoblastic leukemia (Ph + ALL). Blood 108:1469–1477

    Article  CAS  PubMed  Google Scholar 

  37. Delannoy A, Delabesse E, Lheritier V et al (2006) Imatinib and methylprednisolone alternated with chemotherapy improve the outcome of elderly patients with Philadelphia-positive acute lymphoblastic leukemia: results of the GRAALL AFR09 study. Leukemia 20:1526–1532

    Article  CAS  PubMed  Google Scholar 

  38. de Labarthe A, Rousselot P, Huguet-Rigal F et al (2007) Imatinib combined with induction or consolidation chemotherapy in patients with de novo Philadelphia chromosome-positive acute lymphoblastic leukemia: results of the GRAAPH-2003 study. Blood 109:1408–1413

    Article  PubMed  Google Scholar 

  39. Bassan R, Rossi G, Pogliani EM et al (2010) Chemotherapy-phased imatinib pulses improve long-term outcome of adult patients with philadelphia chromosome-positive acute lymphoblastic leukemia: Northern Italy Leukemia Group Protocol 09/00. J Clin Oncol 28:3644–3652

    Article  CAS  PubMed  Google Scholar 

  40. Fielding AK, Foroni L, Gerrard G et al (2014) UKALLXII/ECOG2993: addition of imatinib to a standard treatment regimen enhances long-term outcomes in Philadelphia positive acute lymphoblastic leukemia. Blood 123(6):843–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chalandon Y, Thomas X, Hayette S et al (2015) Randomized study of reduced-intensity chemotherapy combined with imatinib in adults with Ph-positive acute lymphoblastic leukemia. Blood 125(24):3711–3719

    Article  CAS  PubMed  Google Scholar 

  42. Ottmann OG, Wassmann B, Pfeifer H et al (2007) Imatinib compared with chemotherapy as front-line treatment of elderly patients with Philadelphia chromo-some-positive acute lymphoblastic leukemia (Ph + ALL). Cancer 109:2068–2076

    Article  CAS  PubMed  Google Scholar 

  43. Vignetti M, Fazi P, Cimino G et al (2007) Imatinib plus steroids induces complete remissions and prolonged survival in elderly Philadelphia chromosome-positive acute lymphoblastic leukemia patients without additional chemotherapy: results of the GIMEMA LAL0201-B protocol. Blood 109:3676–3678

    Article  CAS  PubMed  Google Scholar 

  44. Talpaz M, Shah NP, Kantarjian H et al (2006) Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med 354:2531–2541

    Article  CAS  PubMed  Google Scholar 

  45. O’Hare T, Walters DK, Stoffregen EP et al (2005) In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res 65(11):4500–4505

    Article  PubMed  Google Scholar 

  46. Luo FR, Yang Z, Camuso A et al (2006) Dasatinib (BMS-354825) pharmacokinetics and pharmacodynamic biomarkers in animal models predict optimal clinical exposure. Clin Cancer Res 12(23):7180–7186

    Article  CAS  PubMed  Google Scholar 

  47. Ottmann O, Dombret H, Martinelli G et al (2007) Dasatinib induces rapid hematologic and cytogenetic responses in adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia with resistance or intolerance to imatinib: interim results of a Phase II study. Blood 110:2309–2315

    Article  CAS  PubMed  Google Scholar 

  48. Porkka K, Martinelli G, Ottman OG, et al. (2008) Dasatinib efficacy in patients with imatinib-resistant/-intolerant Philadelphia-chromosome-positive acute lymphoblastic leukemia: 24-month data from START-L. Proc SIES Annual Meeting, Haematologica 93(s1):1, Abstract 0001

  49. Ravandi F, O’Brien S, Thomas D et al (2010) First report of phase 2 study of dasatinib with hyper-CVAD for the frontline treatment of patients with Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia. Blood 116(12):2070–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ravandi F, O’Brien SM, Cortes JE et al (2015) Long-term follow-up of a phase 2 study of chemotherapy plus dasatinib for the initial treatment of patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Cancer. doi:10.1002/cncr.29646

    PubMed Central  Google Scholar 

  51. Rousselot P, Hayette S, Re ́cher C, et al. (2010) Dasatinib (Sprycel) and low intensity chemotherapy for fırst-line treatment in elderly patients with de novo Philadelphia positive ALL (EWALL-PH-01): kinetic of response, resistance and prognostic significance. Proc Annual AS Meeting Blood 116:21, Abstract 1204

  52. Foa R, Vitale A, Vignetti M et al (2011) Dasatinib as first-line treatment for adult patients with Philadelphia chromosome–positive acute lymphoblastic leukemia. Blood 118(25):6521–8

    Article  CAS  PubMed  Google Scholar 

  53. Weisberg E, Manley PW, Breitenstein W et al (2005) Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 7:129–141

    Article  CAS  PubMed  Google Scholar 

  54. Verstovsek S, Golemovic M, Kantarjian H et al (2005) AMN107, a novel aminopyrimidine inhibitor of p190 Bcr-Abl activation and of in vitro proliferation of Philadelphia-positive acute lymphoblastic leukemia cells. Cancer 104:1230–1236

    Article  CAS  PubMed  Google Scholar 

  55. Kaur P, Feldhahn N, Zhang B et al (2007) Nilotinib treatment in mouse models of P190 Bcr/Abl lymphoblastic leukemia. Mol Cancer 6:67–75

    Article  PubMed  PubMed Central  Google Scholar 

  56. La RP, Holm-Eriksen S, Konig H et al (2009) Phopsho-CRKL monitoring for the assessment of BCR-ABL activity in imatinib-resistant chronic myeloid leukemia or Ph+ acute lymphoblastic leukemia patients treated with nilotinib. Haematologica 39(5):765–769

    Google Scholar 

  57. Zhang H, Gu L, Liu T et al (2014) Inhibition of MDM2 by nilotinib contributes to cytotoxicity in both Philadelphia-positive and negative acute lymphoblastic leukemia. PLoS ONE 9(6), e100960

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tiribelli M, Sperotto A, Candoni A et al (2009) Nilotinib and donor lymphocyte infusion in the treatment of Philadelphia-positive acute lymphoblastic leukemia relapsing after allogeneic stem cell transplantation and resistant to imatinib. Leuk Res 33:174–177

    Article  CAS  PubMed  Google Scholar 

  59. Liu PKT, Huang Q, Ye Y et al (2012) A novel I293MP mutation within BCR-ABL kinase domain in a Ph-positive acute lymphoblastic leukemia patients presenting resistant to imatinib but sensitive to nilotinib. Leuk Res 36:159–162

    Article  Google Scholar 

  60. Merante S, Colombo AA, Calatroni S et al (2009) Nilotinib restores long-term full-donor chimerism in Ph-positive acute lymphoblastic leukemia relapsed after allogeneic transplantation. Bone Marrow Transpl 44:263–264

    Article  CAS  Google Scholar 

  61. Tojo A, Usuki K, Urabe A et al (2009) A phase I/II study of nilotinib in Japanese patients with imatinib-resistant or -intolerant Ph+ CML or relapsed/refratory Ph+ ALL. Int J Hematol 89:679–688

    Article  CAS  PubMed  Google Scholar 

  62. Ottmann OG, Larson RA, Kantrajian HM et al (2013) Phase II study of nilotinib in patients with relapsed or refractory Philadelphia chromosome-positive acute lymphoblastic leukemia. Leukemia 27:1411–1413

    Article  CAS  PubMed  Google Scholar 

  63. Kantarjian H, Giles F, Wunderle L et al (2006) Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med 354:2542–2541

    Article  PubMed  Google Scholar 

  64. Kim DY, Joo YD, Lim SN et al (2015) Nilotinib combined with multiagent chemotherapy for newly diagnosed Philadelphia-positive acute lymphoblastic leukemia. Blood 126(6):746–56

    Article  CAS  PubMed  Google Scholar 

  65. O’Hare T, Pollock R, Stoffrege EP et al (2004) Inhibition of wild-type and mutant Bcr-Abl by AP23464, a potent ATP-based oncogenic protein kinase inhibitor; implications for CML. Blood 104(8):2532–2539

    Article  PubMed  Google Scholar 

  66. O’Hare T, Shakespeare WC, Zhu X et al (2009) AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell 6:401–12

    Article  Google Scholar 

  67. Lu L, Saunders VA, Leclercq TM et al (2015) Ponatinib is not transported by ABCB1, ABCG2 or OCT1 in CML cells. Leukemia 29:1792–1794

    Article  CAS  PubMed  Google Scholar 

  68. Zabriskie MS, Eide CA, Tantravahi SK et al (2014) BCR-ABL1 compound mutations combining key kinase domain positions confer clinical resistance to ponatinib in Ph chromosome-positive leukemia. Cancer Cell 26:1–15

    Article  Google Scholar 

  69. Cortes JE, Kantarjian H, Shah NP et al (2012) Ponatinib in refractory Philadelphia chromosome-positive leukemias. N Engl J Med 367:2075–2088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cortes JE, Kim DW, Pinilla-Ibarz J et al (2013) A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med 369(19):1783–96

    Article  CAS  PubMed  Google Scholar 

  71. Khoury HJ, Cortes IE, Kim D-W, et al. Analysis of the cardiovascular risk profile of Ph+ leukemia patients treated with ponatinib. ASCO 2013, Abstract 7048

  72. Price K, Saleem N, Lee G et al (2013) Potential fo ponatininb to treat chronic myeloid leukemia and acute lymphoblastic leukemia. Oncol Targets Ther 6:1111–18

    CAS  Google Scholar 

  73. Jabbour E, Kantarjian H, Ravandi F et al (2015) Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: a single-centre, phase 2 study. Lancet Oncol 16(15):1547–55

    Article  CAS  PubMed  Google Scholar 

  74. Martinelli G., GIMEMA AL WP (2015) Personal communication

  75. Sadarangani A, Pined G, Lennon KM et al (2015) GLI2 inhibition abrogates human leukemia stem cell dormancy. J Transl Med 13:98

    Article  PubMed  PubMed Central  Google Scholar 

  76. Wylie A, Schoepfer J, Berellini G, et al. (2014) ABL001, a potent allosteric inhibitor of BCR-ABL, prevents emergence of resistant disease when administered in combination with nilotinib in an in vivo murine model of chronic myeloid leukemia. Annual Meeting ASH, Blood 124:21, Abstract 398

  77. Lee S, Kim YJ, Min CK et al (2005) The effect of first-line imatinib interim therapy on the outcome of allogeneic stem cell transplantation in adults with newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood 105:3449–57

    Article  CAS  PubMed  Google Scholar 

  78. Mizuta S, Matsuo K, Nishiwaki S et al (2014) Pretransplant administration of imatinib for allo-HSCT in patients with BCR-ABL-positive acute lymphoblastic leukemia. Blood 123(15):2352–32

    Article  Google Scholar 

  79. Radich J, Gehly G, Lee A et al (1997) Detection of BCR-ABL transcripts in Philadelphia chromosome-positive acute lymphoblastic leukemia after marrow transplantation. Blood 89:2602–9

    CAS  PubMed  Google Scholar 

  80. Carpenter PA, Snyder DS, Flowers ME et al (2007) Prophylactic administration of imatinib after hematopoietic cell transplantation for high-risk Philadelphia chromosome-positive leukemia. Blood 109:2791–93

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Wassmann B, Pfeifer H, Stadler M et al (2005) Early molecular response to posttransplantation imatinib determines outcome in MRD+ Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL). Blood 106:458–63

    Article  CAS  PubMed  Google Scholar 

  82. Burke MJ, Trotz B, Luo X et al (2009) Allo-hematopoietic cell transplantation for Ph chromosome-positive ALL: impact of imatinib on relapse and survival. Bone Marrow Transplant 43:107–13

    Article  CAS  PubMed  Google Scholar 

  83. Baccarani M, Deininger MW, Rosti G et al (2013) European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood 122(6):872–884

    Article  CAS  PubMed  Google Scholar 

  84. Ravandi F, Kebriaei P (2009) Philadelphia chromosome-positive acute lymphoblastic leukemia. Hematol Oncol Clin North Am 23(5):1043–63

    Article  PubMed  PubMed Central  Google Scholar 

  85. Gambacorti-Passerini C, Kantarjian H, Kim D et al (2015) Long-term efficacy and safety of bosutinib in patients with advanced leukemia following resistance/intolerance to imatinib and other tyrosine kinase inhibitors. Am J Hematol 90(9):755–68

    Article  CAS  PubMed  Google Scholar 

  86. Jabbour E, O’Brien S, Ravandi F, Kantarjian H (2015) Monoclonal antibodies in acute lymphoblastic leukemia. Blood 125(26):4010–4016

    Article  CAS  PubMed  Google Scholar 

  87. Maude SL, Teachey DT, Porter DL, Grupp SA (2015) CD-19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood 125(26):4017–4023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Malagola.

Ethics declarations

Conflict of interest

Michele Baccarani received honoraria from Novartis, Bristol-Myers Squibb, Pfizer, and Ariad and serves on the speaker’s bureau of Novartis and Bristol Myers-Squibb. All the other authors have nothing to disclose. This paper represents original work and has not been previously published or simultaneously submitted elsewhere. This manuscript has been written, read, and approved by all the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malagola, M., Papayannidis, C. & Baccarani, M. Tyrosine kinase inhibitors in Ph+ acute lymphoblastic leukaemia: facts and perspectives. Ann Hematol 95, 681–693 (2016). https://doi.org/10.1007/s00277-016-2617-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-016-2617-y

Keywords

Navigation