Skip to main content

Advertisement

Log in

Lymphocyte recovery is impaired in patients with chronic lymphocytic leukemia and indolent non-Hodgkin lymphomas treated with bendamustine plus rituximab

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

The immune system has the potential to either attenuate tumor growth or to promote tumor progression. The goal of cancer immunotherapy is to shift the balance in favor of tumor immunosurveillance, so that the immune system can recognize the tumor, eliminate it, and prevent its recurrence. Bendamustine plus rituximab is generally considered effective and safe in patients with previously untreated chronic lymphocytic leukemia (CLL) and indolent non-Hodgkin lymphomas. To evaluate the effects of bendamustine-rituximab and rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) on the recuperation of immune system, we analyze the distribution of CD4+ and CD8+ T cells, B cells, and NK cells in peripheral blood of 18 patients who received 4–6 cycles of rituximab-bendamustine (BR) or six R-CHOP before therapy and 6 months after completing treatment. Our results indicate that lymphocyte recovery is impaired in patients with chronic lymphocytic leukemia and indolent lymphomas treated with bendamustine plus rituximab. Low CD4 T cells (<200 cells/μl) induced by bendamustine (BR) suggest prophylaxis should be applied against opportunistic infections. Asymptomatic EBV and CMV reactivations support a negative effect of BR on the immune system. If cellular immune therapy such as lymphokine-activated killer (LAK) or effector lymphocytes infusion is planned, regimes other than BR should be the first choice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Salles G, Seymour JF, Offner F et al (2011) Rituximab maintenance for 2 years in patients with high tumour burden follicular lymphoma responding to rituximab plus chemotherapy (PRIMA): a phase 3, randomised controlled trial. Lancet 377:45–51

    Google Scholar 

  2. Czuczman MS, Weaver R, Alkuzweny B et al (2004) Prolonged clinical and molecular remission in patients with low-grade or follicular non Hodgkin treated with rituximab plus CHOP chemotherapy: 9 year follow up. J Clin Oncol 22:4711–4716

    Article  PubMed  CAS  Google Scholar 

  3. Cragg MS, Glennie MJ (2004) Antibody specificity controls in vivo effector mechanisms of anti-CD20 reagents. Blood 103:2738–2743

    Article  PubMed  CAS  Google Scholar 

  4. Mosser E, Brunker P, Moser S et al (2010) Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell-mediated B cell cytotoxicity. Blood 115:4393–4402

    Article  Google Scholar 

  5. Braza MS, Klein B, Fiol G, Rossi JF (2011) γδ T cell killing of primary follicular lymphoma cells is dramatically potentiated by GA101, a type II glycoengineered anti-CD20 monoclonal antibody. Haematologica 96:400–407

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Goede V, Fischer K, Busch R et al (2014) Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N Eng J Med 370:1101–1110

    Article  CAS  Google Scholar 

  7. Bendandi M, Gocke CD, Kobrin CB et al (1999) Complete molecular remissions induced by patient specific vaccination plus granulocyte monocyte colony stimulating factor against lymphoma. Nat Med 5:1171.1177

    PubMed  Google Scholar 

  8. Inogés S, Rodriguez-Calvillo M, Zabalegui N et al (2006) Clinical benefit associated with idiotype vaccination in patients with follicular lymphoma. J Natl Cancer Inst 98:1292–1301

    Article  PubMed  Google Scholar 

  9. Rituximab and autologous effector lymphocytes in non-Hodgkin follicular lymphoma in response to first line chemotherapy. Clinical Trials. Gov identifier NCT01329354

  10. Flinn IW, van der Jagt R, Kahl BS et al (2014) Open label, randomized, noninferiority study of bendamustine-rituximab or R-CHOP/R-CVP in first-line treatment advanced indolent NHL or MCL: the BRIGHT study. Blood. doi:10.1182/Blood-2013-11-531327

    Google Scholar 

  11. Rummel MJ, Niederle N, Maschmeyer G et al (2013) Bendamustine plus Rituximab versus CHOP plus Rituximab as first-line treatment for patients with indolent and mantle-cell lymphomas: an open label, multicentre randomised, phase 3 non inferiority trial. Lancet 6736:61763–2

    Google Scholar 

  12. Fischer K, Cramper P, Busch R, Böttcher S, Bahlo J, Schubert J et al (2012) Bendamustine in combination with rituximab for previously untreated patients with chronic lymphocytic leukaemia: a multicenter phase II trial of the German Chronic Lymphocytic Leukaemia Study Group. J Clin Oncol 30:3209–3216

    Article  PubMed  CAS  Google Scholar 

  13. Rummel MJ, Al-Batran SE, Kim SZ, Welslau M, Hacker R, Kofahl-Krause D et al (2005) Bendamustine plus Rituximab is effective and has a favorable toxicity profile in the treatment of mantle cell and indolent non-Hodgkin’s lymphoma. J Clin Oncol 23:3383–3389

    Article  PubMed  CAS  Google Scholar 

  14. Georgiana G, Perez-Andres M, Barrena S, Rivas RA, Gonzalez M, Rabasa P et al (2013) Effects of Bendamustine plus Rituximab on the distribution of normal peripheral blood leucocyte populations in advanced stage chronic lymphocytic leukemia (CLL). Blood 122:5289

    Google Scholar 

  15. Layman RM, Ruppert AS, Lynn M, Mrozek E, Ramaswamy B, Lustberg MB et al (2013) Sever and prolonged lymphopenia observed in patients treated with bendamustine and erlotinib for metastatic triple negative breast cancer. Cancer Chemother Pharmacol 71:1183–1190

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Cheson BD, Horning SJ, Coiffier B et al (1999) Report of an international workshop to standardize response criteria for non-Hodgkin’s lymphomas. J Clin Oncol 17:1244–1253

    PubMed  CAS  Google Scholar 

  17. Cheson BD, Pfistner B, Juweid ME et al (2007) Revised response criteria for malignant lymphoma. J Clin Oncol 25:579–586

    Article  PubMed  Google Scholar 

  18. Cheson BD, Bennet JM, Grever M et al (2002) National cancer institute-sponsored working group guidelines for chronic lymphocytic leukemia: revised guidelines for diagnosis and treatment. Blood 100:2289–2290

    Article  Google Scholar 

  19. Rawstron A, Villamor N, Ritgen M et al (2007) International standardized approach for flow cytometric residual disease monitoring in chronic lymphocytic leukemia. Leukemia 21:956–964

    PubMed  CAS  Google Scholar 

  20. Rawal S, Chu F, Zhang M et al (2013) Cross talk between follicular Th cells and tumor cells in follicular lymphoma promotes immune evasion in the tumor microenvironment. J Immunol 190:6681–6693

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. García-Muñoz R, Llorente L (2014) Chronic lymphocytic leukemia (CLL): could immunological tolerance mechanisms be the origin of lymphoid neoplasms? Immunology. doi:10.1111/imm.12285

    PubMed  Google Scholar 

  22. Witheside TL, Robinson B, June CH, Lotze MT (2013) Principles of tumor immunology. In Rich RR, Fleisher TA, Shearer WT, Schroeder HW, Frew AJ, Weyland CM (eds) Clinical Immunology. Principles and Practice. 4th edn. Elsevier Saunders 925-934

  23. Ramsay AG, Clear AJ, Kelly G, Fatah R, Matthews J, Macdougall F et al (2009) Follicular lymphoma cells induce T cell immunologic synapse dysfunction that can be repaired with lenalidomide: implications for the tumor microenvironment and immunotherapy. Blood 114:4713–4720

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Ai WZ, Novak AJ, Hou JZ, Zeizer R, Czerwinski D, Negrin RS, Levy R (2009) Follicular lymphoma B cells induce the conversion of conventional CD4+ T cells to T regulatory cells. Int J Cancer 124:239–244

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Yang ZZ, Novak AJ, Stenson MJ, Witzing TE, Ansell SM (2006) Intratumoral CD4 + CD25+ regulatory T-cell-mediated suppression of infiltrating CD4+ T cells in B-cell non-Hodgkin lymphoma. Blood 107:3639–3646

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Yang ZZ, Novak AJ, Ziesmer SC, Witzing TE, Ansell SM (2006) Attenuation of CD8(+) T-cell function by CD4(+)CD25(+) regulatory T cells in B-cell non-Hodgkin’s lymphoma. Cancer Res 66:1045–10152

    Google Scholar 

  27. Kiali S, Clear AJ, Ramsay AG, Davies D, Sangaralingam A, Lee A et al (2013) Follicular lymphoma cells induce changes in T cell gene expression and function: potential impact on survival and risk of transformation. J ClinOncol 31:2654–2661

    Article  Google Scholar 

  28. Ramsay AG, Johnson AJ, Lee AM, Gorgün G, Le Dieu R, Blum W, Byrd JC, Gribben JG (2008) Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug. J Clin Invest 118:2427–2437

    PubMed  CAS  PubMed Central  Google Scholar 

  29. Ramsay AG, Clear AJ, Fatah R, Gribben JG (2012) Multiple inhibitory ligands induce impaired T-cell immunologic synapse function in chronic lymphocytic leukemia that can be blocked with lenalidomide: establishing a reversible immune evasion mechanism in human cancer. Blood 120:1412–1421

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Weiss L, Melchardt T, Eagle A, Grabmer C, Greil R, Tinhofer I (2009) Regulatory T cells predict the time to initial treatment in early stage chronic lymphocytic leukemia. Cancer 27:e5–e6

    Google Scholar 

  31. D'Arena G, D'Auria F, Simeon V, Laurenti L, Deaglio S, Mansueto G et al (2012) A shorter time to the first treatment may be predicted by the absolute number of regulatory T cells in patients with Rai stage 0 chronic lymphocytic leukemia. Am J Hematol 87:628–631

    Article  PubMed  Google Scholar 

  32. Lad DP, Varma S, Varma N, Sachdeva MU, Bose P, Malhotra P (2013) Regulatory T cells in B cell chronic lymphocytic leukemia: their role in disease progression and autoimmune cytopenias. Leuk Lymphoma 54:1012–1019

    Article  PubMed  CAS  Google Scholar 

  33. Sampalo A, Brieva JH (2002) Humoral immunodeficiency in chronic lymphocytic leukemia: role of CD95/95L in tumoral damage and escape. Leuk Lymphoma 43:881–884

    Article  PubMed  CAS  Google Scholar 

  34. Hallek M (2013) Singalling the end of chronic lymphocytic leukemia: new frontline treatment strategies. Hematol Am Soc Hematol Educ Program 2013:138–150

    Article  Google Scholar 

  35. Hosoda T, Yokoyama A, Yoneda M, Yamamoto R, Ohashi K, Kagoo T et al (2013) Bendamustine can severely impair T cell immunity against cytomegalovirus. Leuk Lymphoma 54:1327–1328

    Article  PubMed  CAS  Google Scholar 

  36. García-Muñoz R, García DK, Roldan-Galiacho V, Merchante-Andreu M, Campeny-Najara A, Rabasa P (2014) Therapy-related acute myeloid leukemia in a patient with chronic lymphocytic leukemia treated with rituximab-bendamustine. Ann Hematol 93:699–702

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo García Muñoz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 58 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García Muñoz, R., Izquierdo-Gil, A., Muñoz, A. et al. Lymphocyte recovery is impaired in patients with chronic lymphocytic leukemia and indolent non-Hodgkin lymphomas treated with bendamustine plus rituximab. Ann Hematol 93, 1879–1887 (2014). https://doi.org/10.1007/s00277-014-2135-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-014-2135-8

Keywords

Navigation