Skip to main content

Advertisement

Log in

Myelodysplastic syndromes with 5q deletion: pathophysiology and role of lenalidomide

  • Review Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Myelodysplastic syndrome (MDS) is a hematopoietic stem cell disorder primarily affecting CD34+ cells, characterized by ineffective hematopoiesis, often transforming into acute myelogenous leukemia (AML). A subset of patients has 5q deletion (del(5q)) as the culprit pathogenetic trigger. Del(5q) affects critical regions 5q31 and 5q33, leading to gene haplodeficiency with subsequent RPS14 haplodeficiency and P53 activation. Subsequent to P53 activation, erythroid cell apoptosis and ineffective erythropoiesis occur. Other pathogenetic elements include protein phosphatase 2a and CDC25C haplodeficiency and decreased miR-145 and miR-146a expression. Lenalidomide is an immunomodulatory agent that selectively suppresses the del(5q) clone. While the mechanism is not fully understood, it is associated with diverse molecular changes including stabilization of MDM2 with subsequent enhanced P53 degradation. Lenalidomide showed success in low- and intermediate-1-risk MDS as reported in the 002, 003, and 004 trials. However, in higher-risk MDS, the results of lenalidomide monotherapy were modest, mandating the use of combination therapy. The role and priority of lenalidomide varies between different guidelines, and accordingly, future efforts are necessary to reach a unified therapeutic algorithm. TP53 mutations are important predictors of AML progression and possible resistance to lenalidomide. It is recommended to identify TP53 mutation early in the disease since it may change the decision regarding choice of therapy. Challenges with lenalidomide therapy remain the long-term effects and timing of its discontinuation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nilsson L, Eden P, Olsson E, Mansson R, Astrand-Grundstrom I, Strombeck B, Theilgaard-Monch K, Anderson K, Hast R, Hellstrom-Lindberg E, Samuelsson J, Bergh G, Nerlov C, Johansson B, Sigvardsson M, Borg A, Jacobsen SE (2007) The molecular signature of MDS stem cells supports a stem-cell origin of 5q myelodysplastic syndromes. Blood 110(8):3005–3014. doi:10.1182/blood-2007-03-079368

    Article  PubMed  CAS  Google Scholar 

  2. Giagounidis AA, Germing U, Aul C (2006) Biological and prognostic significance of chromosome 5q deletions in myeloid malignancies. Clin Cancer Res 12(1):5–10. doi:10.1158/1078-0432.CCR-05-1437

    Article  PubMed  CAS  Google Scholar 

  3. Sole F, Espinet B, Sanz GF, Cervera J, Calasanz MJ, Luno E, Prieto F, Granada I, Hernandez JM, Cigudosa JC, Diez JL, Bureo E, Marques ML, Arranz E, Rios R, Martinez Climent JA, Vallespi T, Florensa L, Woessner S (2000) Incidence, characterization and prognostic significance of chromosomal abnormalities in 640 patients with primary myelodysplastic syndromes. Grupo Cooperativo Espanol de Citogenetica Hematologica. Br J Haematol 108(2):346–356

    Article  PubMed  CAS  Google Scholar 

  4. Heim S, Mitelman F (1986) Chromosome abnormalities in the myelodysplastic syndromes. Clin Haematol 15(4):1003–1021

    PubMed  CAS  Google Scholar 

  5. Ebert BL (2010) Genetic deletions in AML and MDS. Best Pract Res Clin Haematol 23(4):457–461. doi:10.1016/j.beha.2010.09.006

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Dutt S, Narla A, Lin K, Mullally A, Abayasekara N, Megerdichian C, Wilson FH, Currie T, Khanna-Gupta A, Berliner N, Kutok JL, Ebert BL (2011) Haploinsufficiency for ribosomal protein genes causes selective activation of p53 in human erythroid progenitor cells. Blood 117(9):2567–2576. doi:10.1182/blood-2010-07-295238

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Fenaux P, Kelaidi C (2006) Treatment of the 5q– Syndrome. ASH Education Program Book 2006(1):192–198. doi:10.1182/asheducation-2006.1.192

  8. Boultwood J, Fidler C, Strickson AJ, Watkins F, Gama S, Kearney L, Tosi S, Kasprzyk A, Cheng JF, Jaju RJ, Wainscoat JS (2002) Narrowing and genomic annotation of the commonly deleted region of the 5q- syndrome. Blood 99(12):4638–4641

    Article  PubMed  CAS  Google Scholar 

  9. Zhao N, Stoffel A, Wang PW, Eisenbart JD, Espinosa R 3rd, Larson RA, Le Beau MM (1997) Molecular delineation of the smallest commonly deleted region of chromosome 5 in malignant myeloid diseases to 1-1.5 Mb and preparation of a PAC-based physical map. Proc Natl Acad Sci U S A 94(13):6948–6953

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Horrigan SK, Arbieva ZH, Xie HY, Kravarusic J, Fulton NC, Naik H, Le TT, Westbrook CA (2000) Delineation of a minimal interval and identification of 9 candidates for a tumor suppressor gene in malignant myeloid disorders on 5q31. Blood 95(7):2372–2377

    PubMed  CAS  Google Scholar 

  11. Boultwood J (2011) The role of haploinsufficiency of RPS14 and p53 activation in the molecular pathogenesis of the 5q- syndrome. Pediatr Rep 3(Suppl 2):e10. doi:10.4081/pr.2011.s2.e10

    PubMed Central  PubMed  Google Scholar 

  12. Boultwood J, Pellagatti A, Cattan H, Lawrie CH, Giagounidis A, Malcovati L, Della Porta MG, Jadersten M, Killick S, Fidler C, Cazzola M, Hellstrom-Lindberg E, Wainscoat JS (2007) Gene expression profiling of CD34+ cells in patients with the 5q- syndrome. Br J Haematol 139(4):578–589. doi:10.1111/j.1365-2141.2007.06833.x

    Article  PubMed  CAS  Google Scholar 

  13. Ebert BL, Pretz J, Bosco J, Chang CY, Tamayo P, Galili N, Raza A, Root DE, Attar E, Ellis SR, Golub TR (2008) Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature 451(7176):335–339. doi:10.1038/nature06494

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Ferreira-Cerca S, Hurt E (2009) Cell biology: arrest by ribosome. Nature 459(7243):46–47. doi:10.1038/459046a

    Article  PubMed  CAS  Google Scholar 

  15. Barlow JL, Drynan LF, Hewett DR, Holmes LR, Lorenzo-Abalde S, Lane AL, Jolin HE, Pannell R, Middleton AJ, Wong SH, Warren AJ, Wainscoat JS, Boultwood J, McKenzie AN (2010) A p53-dependent mechanism underlies macrocytic anemia in a mouse model of human 5q- syndrome. Nat Med 16(1):59–66. doi:10.1038/nm.2063

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Panic L, Montagne J, Cokaric M, Volarevic S (2007) S6-haploinsufficiency activates the p53 tumor suppressor. Cell Cycle 6(1):20–24

    Article  PubMed  CAS  Google Scholar 

  17. McGowan KA, Li JZ, Park CY, Beaudry V, Tabor HK, Sabnis AJ, Zhang W, Fuchs H, de Angelis MH, Myers RM, Attardi LD, Barsh GS (2008) Ribosomal mutations cause p53-mediated dark skin and pleiotropic effects. Nat Genet 40(8):963–970. doi:10.1038/ng.188

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Fang S, Jensen JP, Ludwig RL, Vousden KH, Weissman AM (2000) Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem 275(12):8945–8951

    Article  PubMed  CAS  Google Scholar 

  19. Pellagatti A, Marafioti T, Paterson JC, Barlow JL, Drynan LF, Giagounidis A, Pileri SA, Cazzola M, McKenzie AN, Wainscoat JS, Boultwood J (2010) Induction of p53 and up-regulation of the p53 pathway in the human 5q- syndrome. Blood 115(13):2721–2723. doi:10.1182/blood-2009-12-259705

    Article  PubMed  CAS  Google Scholar 

  20. Meek DW (2009) Tumour suppression by p53: a role for the DNA damage response? Nat Rev Cancer 9:714–723. doi:10.1038/nrc2716

    PubMed  CAS  Google Scholar 

  21. Negrini S, Gorgoulis VG, Halazonetis TD (2010) Genomic instability—an evolving hallmark of cancer. Nat Rev Mol Cell Biol 11(3):220–228. doi:10.1038/nrm2858

    Article  PubMed  CAS  Google Scholar 

  22. Wei S, Chen X, Rocha K, Epling-Burnette PK, Djeu JY, Liu Q, Byrd J, Sokol L, Lawrence N, Pireddu R, Dewald G, Williams A, Maciejewski J, List A (2009) A critical role for phosphatase haplodeficiency in the selective suppression of deletion 5q MDS by lenalidomide. Proc Natl Acad Sci U S A 106(31):12974–12979. doi:10.1073/pnas.0811267106

    Article  PubMed Central  PubMed  Google Scholar 

  23. Rhyasen GW, Starczynowski DT (2012) Deregulation of microRNAs in myelodysplastic syndrome. Leukemia 26(1):13–22. doi:10.1038/leu.2011.221

    Google Scholar 

  24. Kumar MS, Narla A, Nonami A, Mullally A, Dimitrova N, Ball B, McAuley JR, Poveromo L, Kutok JL, Galili N, Raza A, Attar E, Gilliland DG, Jacks T, Ebert BL (2011) Coordinate loss of a microRNA and protein-coding gene cooperate in the pathogenesis of 5q- syndrome. Blood 118(17):4666–4673. doi:10.1182/blood-2010-12-324715

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Starczynowski DT, Karsan A (2010) Deregulation of innate immune signaling in myelodysplastic syndromes is associated with deletion of chromosome arm 5q. Cell Cycle 9(5):855–856

    Article  PubMed  CAS  Google Scholar 

  26. Padron E, Komrokji R, List AF (2011) The 5q- syndrome: biology and treatment. Curr Treat Options Oncol 12(4):354–368. doi:10.1007/s11864-011-0165-1

    Article  PubMed  Google Scholar 

  27. Metcalf D, Carpinelli MR, Hyland C, Mifsud S, Dirago L, Nicola NA, Hilton DJ, Alexander WS (2005) Anomalous megakaryocytopoiesis in mice with mutations in the c-Myb gene. Blood 105(9):3480–3487. doi:10.1182/blood-2004-12-4806

    Article  PubMed  CAS  Google Scholar 

  28. Dostalova Merkerova M, Krejcik Z, Votavova H, Belickova M, Vasikova A, Cermak J (2011) Distinctive microRNA expression profiles in CD34+ bone marrow cells from patients with myelodysplastic syndrome. Eur J Hum Genet 19(3):313–319. doi:10.1038/ejhg.2010.209

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Wei S, Chen X, McGraw K, Zhang L, Komrokji R, Clark J, Caceres G, Billingsley D, Sokol L, Lancet J, Fortenbery N, Zhou J, Eksioglu EA, Sallman D, Wang H, Epling-Burnette PK, Djeu J, Sekeres M, Maciejewski JP, List A (2013) Lenalidomide promotes p53 degradation by inhibiting MDM2 auto-ubiquitination in myelodysplastic syndrome with chromosome 5q deletion. Oncogene 32(9):1110–1120. doi:10.1038/onc.2012.139

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. List AFRK, Zhang L et al (2009) Secondary resistance to lenalidomide in del(5q) MDS is associated with CDC25C & PP2A overexpression. ASH Annu Meet Abstr 114:292

    Google Scholar 

  31. Komrokji RS, List AF (2011) Role of lenalidomide in the treatment of myelodysplastic syndromes. Semin Oncol 38(5):648–657. doi:10.1053/j.seminoncol.2011.04.015

    Article  PubMed  CAS  Google Scholar 

  32. Padron E, Komrokji R, List AF (2011) Biology and treatment of the 5q- syndrome. Expert Rev Hematol 4(1):61–69. doi:10.1586/ehm.11.2

    Article  PubMed  CAS  Google Scholar 

  33. Pellagatti A, Jadersten M, Forsblom AM, Cattan H, Christensson B, Emanuelsson EK, Merup M, Nilsson L, Samuelsson J, Sander B, Wainscoat JS, Boultwood J, Hellstrom-Lindberg E (2007) Lenalidomide inhibits the malignant clone and up-regulates the SPARC gene mapping to the commonly deleted region in 5q- syndrome patients. Proc Natl Acad Sci U S A 104(27):11406–11411. doi:10.1073/pnas.0610477104

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Rhyasen GW, Starczynowski DT (2012) Deregulation of microRNAs in myelodysplastic syndrome. Leukemia 26(1):13–22. doi:10.1038/leu.2011.221

    Article  PubMed  CAS  Google Scholar 

  35. Oliva ENNF, Iacopino P, Alimena G, Raimondo FD, Palumbo GA et al (2010) (2010) Increases in Mirna-145 and Mirna-146a expression in patients with IPSS lower-risk myelodysplastic syndromes and del(5q) treated with lenalidomide. American Society of Hematology, Orlando

    Google Scholar 

  36. Verhelle D, Corral LG, Wong K, Mueller JH, Moutouh-de Parseval L, Jensen-Pergakes K, Schafer PH, Chen R, Glezer E, Ferguson GD, Lopez-Girona A, Muller GW, Brady HA, Chan KW (2007) Lenalidomide and CC-4047 inhibit the proliferation of malignant B cells while expanding normal CD34+ progenitor cells. Cancer Res 67(2):746–755. doi:10.1158/0008-5472.CAN-06-2317

    Article  PubMed  CAS  Google Scholar 

  37. Matsuoka A, Tochigi A, Kishimoto M, Nakahara T, Kondo T, Tsujioka T, Tasaka T, Tohyama Y, Tohyama K (2010) Lenalidomide induces cell death in an MDS-derived cell line with deletion of chromosome 5q by inhibition of cytokinesis. Leukemia 24(4):748–755. doi:10.1038/leu.2009.296

    Article  PubMed  CAS  Google Scholar 

  38. Hoefsloot LH, van Amelsvoort MP, Broeders LC, van der Plas DC, van Lom K, Hoogerbrugge H, Touw IP, Lowenberg B (1997) Erythropoietin-induced activation of STAT5 is impaired in the myelodysplastic syndrome. Blood 89(5):1690–1700

    PubMed  CAS  Google Scholar 

  39. List AFLJ, Melchert M et al (2007) Two-stage pharmacokinetic & efficacy study of lenalidomide alone or combined with recombinant erythropoietin (EPO) in lower risk MDS EPO-failures [PK-002]. ASH Annu Meet Abstr 110:4626

    Google Scholar 

  40. Group NM Guidelines for the diagnosis and treatment of Myelodysplastic Syndromes and Chronic Myelomonocytic Leukemia. MDS Guideline Programme (Issue 6)

  41. (EMA) EMA (2013) European public assessment report (EPAR) for Lenalidomide. http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/000717/human_med_001034.jsp&mid=WC0b01ac058001d124. Accessed 24 Dec 2013

  42. Malcovati L, Hellstrom-Lindberg E, Bowen D, Ades L, Cermak J, Del Canizo C, Della Porta MG, Fenaux P, Gattermann N, Germing U, Jansen JH, Mittelman M, Mufti G, Platzbecker U, Sanz GF, Selleslag D, Skov-Holm M, Stauder R, Symeonidis A, van de Loosdrecht AA, de Witte T, Cazzola M, European Leukemia N (2013) Diagnosis and treatment of primary myelodysplastic syndromes in adults: recommendations from the European LeukemiaNet. Blood 122(17):2943–2964. doi:10.1182/blood-2013-03-492884

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. NCCN (2013) NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®)—myelodysplastic syndromes (version 2.2014)

  44. List A, Dewald G, Bennett J, Giagounidis A, Raza A, Feldman E, Powell B, Greenberg P, Thomas D, Stone R, Reeder C, Wride K, Patin J, Schmidt M, Zeldis J, Knight R, Myelodysplastic Syndrome-003 Study I (2006) Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N Engl J Med 355(14):1456–1465. doi:10.1056/NEJMoa061292

    Article  PubMed  CAS  Google Scholar 

  45. Raza A, Reeves JA, Feldman EJ, Dewald GW, Bennett JM, Deeg HJ, Dreisbach L, Schiffer CA, Stone RM, Greenberg PL, Curtin PT, Klimek VM, Shammo JM, Thomas D, Knight RD, Schmidt M, Wride K, Zeldis JB, List AF (2008) Phase 2 study of lenalidomide in transfusion-dependent, low-risk, and intermediate-1 risk myelodysplastic syndromes with karyotypes other than deletion 5q. Blood 111(1):86–93. doi:10.1182/blood-2007-01-068833

    Article  PubMed  CAS  Google Scholar 

  46. Fenaux P, Giagounidis A, Selleslag D, Beyne-Rauzy O, Mufti G, Mittelman M, Muus P, Te Boekhorst P, Sanz G, Del Canizo C, Guerci-Bresler A, Nilsson L, Platzbecker U, Lubbert M, Quesnel B, Cazzola M, Ganser A, Bowen D, Schlegelberger B, Aul C, Knight R, Francis J, Fu T, Hellstrom-Lindberg E, Group MDSLdqS (2011) A randomized phase 3 study of lenalidomide versus placebo in RBC transfusion-dependent patients with Low-/Intermediate-1-risk myelodysplastic syndromes with del5q. Blood 118(14):3765–3776. doi:10.1182/blood-2011-01-330126

    Article  PubMed  CAS  Google Scholar 

  47. Ades L, Boehrer S, Prebet T, Beyne-Rauzy O, Legros L, Ravoet C, Dreyfus F, Stamatoullas A, Chaury MP, Delaunay J, Laurent G, Vey N, Burcheri S, Mbida RM, Hoarau N, Gardin C, Fenaux P (2009) Efficacy and safety of lenalidomide in intermediate-2 or high-risk myelodysplastic syndromes with 5q deletion: results of a phase 2 study. Blood 113(17):3947–3952. doi:10.1182/blood-2008-08-175778

    Article  PubMed  CAS  Google Scholar 

  48. Mollgard L, Saft L, Treppendahl MB, Dybedal I, Norgaard JM, Astermark J, Ejerblad E, Garelius H, Dufva IH, Jansson M, Jadersten M, Kjeldsen L, Linder O, Nilsson L, Vestergaard H, Porwit A, Gronbaek K, Hellstrom-Lindberg E (2011) Clinical effect of increasing doses of lenalidomide in high-risk myelodysplastic syndrome and acute myeloid leukemia with chromosome 5 abnormalities. Haematologica 96(7):963–971. doi:10.3324/haematol.2010.039669

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Sekeres MA, Cutler C (2014) How we treat higher-risk myelodysplastic syndromes. Blood 123(6):829–836. doi:10.1182/blood-2013-08-496935

    Google Scholar 

  50. Ornstein MC, Sekeres MA (2012) Combination strategies in myelodysplastic syndromes. Int J Hematol 95(1):26–33. doi:10.1007/s12185-011-0987-4

    Article  PubMed  Google Scholar 

  51. Sekeres MA, Tiu RV, Komrokji R, Lancet J, Advani AS, Afable M, Englehaupt R, Juersivich J, Cuthbertson D, Paleveda J, Tabarroki A, Visconte V, Makishima H, Jerez A, Paquette R, List AF, Maciejewski JP (2012) Phase 2 study of the lenalidomide and azacitidine combination in patients with higher-risk myelodysplastic syndromes. Blood 120(25):4945–4951. doi:10.1182/blood-2012-06-434639

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Platzbecker U, Braulke F, Kundgen A, Gotze K, Bug G, Schonefeldt C, Shirneshan K, Rollig C, Bornhauser M, Naumann R, Neesen J, Giagounidis A, Hofmann WK, Ehninger G, Germing U, Haase D, Wermke M (2013) Sequential combination of azacitidine and lenalidomide in del(5q) higher-risk myelodysplastic syndromes or acute myeloid leukemia: a phase I study. Leukemia 27(6):1403–1407. doi:10.1038/leu.2013.26

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Scherman E, Malak S, Perot C, Gorin NC, Rubio MT, Isnard F (2012) Interest of the association azacitidinelenalidomide as frontline therapy in high-risk myelodysplasia or acute myeloid leukemia with complex karyotype. Leukemia 26(4):822–824. doi:10.1038/leu.2011.284

    Google Scholar 

  54. Garcia-Manero G, Daver NG, Borthakur G, Konopleva M, Ravandi F, Wierda WG, Estrov Z, Faderl S, Kadia T, Rey K, Cheung C, Kantarjian HM (2011) Phase I study of the combination of 5-azacitidine sequentially with high-dose lenalidomide in higher-risk myelodysplastic syndrome (MDS) and acute myelogenous leukemia (AML). ASH Annu Meet Abstr 118(21):2613

    Google Scholar 

  55. Pal R, Monaghan SA, Hassett AC, Mapara MY, Schafer P, Roodman GD, Ragni MV, Moscinski L, List A, Lentzsch S (2010) Immunomodulatory derivatives induce PU.1 down-regulation, myeloid maturation arrest, and neutropenia. Blood 115(3):605–614. doi:10.1182/blood-2009-05-221077

    Article  PubMed  CAS  Google Scholar 

  56. Chen N, Lau H, Kong L, Kumar G, Zeldis JB, Knight R, Laskin OL (2007) Pharmacokinetics of lenalidomide in subjects with various degrees of renal impairment and in subjects on hemodialysis. J Clin Pharmacol 47(12):1466–1475. doi:10.1177/0091270007309563

    Article  PubMed  CAS  Google Scholar 

  57. Bagratuni T, Kastritis E, Politou M, Roussou M, Kostouros E, Gavriatopoulou M, Eleutherakis-Papaiakovou E, Kanelias N, Terpos E, Dimopoulos MA (2013) Clinical and genetic factors associated with venous thromboembolism in myeloma patients treated with lenalidomide-based regimens. Am J Hemat 88(9):765–770. doi:10.1002/ajh.23504

    Article  PubMed  CAS  Google Scholar 

  58. Gohring G, Giagounidis A, Busche G, Kreipe HH, Zimmermann M, Hellstrom-Lindberg E, Aul C, Schlegelberger B (2010) Patients with del(5q) MDS who fail to achieve sustained erythroid or cytogenetic remission after treatment with lenalidomide have an increased risk for clonal evolution and AML progression. Ann Hematol 89(4):365–374. doi:10.1007/s00277-009-0846-z

    Article  PubMed  CAS  Google Scholar 

  59. Ades L, Lebras F, Sebert M, Kelaidi C, Lamy T, Dreyfus F, Eclache V, Delaunay J, Bouscary D, Visanica S, Turlure P, Guerci Bresler A, Cabrol MP, Banos A, Blanc M, Vey N, Delmer A, Wattel E, Chevret S, Fenaux P (2011) Treatment with Lenalidomide does not appear to increase the risk of leukemia progression in lower risk myelodysplastic syndrome with 5q deletion. A comparative analysis by the GFM. Haematologica. doi:10.3324/haematol.2011.045914

    PubMed  Google Scholar 

  60. Park S, Grabar S, Kelaidi C, Beyne-Rauzy O, Picard F, Bardet V, Coiteux V, Leroux G, Lepelley P, Daniel MT, Cheze S, Mahe B, Ferrant A, Ravoet C, Escoffre-Barbe M, Ades L, Vey N, Aljassem L, Stamatoullas A, Mannone L, Dombret H, Bourgeois K, Greenberg P, Fenaux P, Dreyfus F, group GFM (2008) Predictive factors of response and survival in myelodysplastic syndrome treated with erythropoietin and G-CSF: the GFM experience. Blood 111(2):574–582. doi:10.1182/blood-2007-06-096370

    Article  PubMed  CAS  Google Scholar 

  61. Jadersten M, Saft L, Smith A, Kulasekararaj A, Pomplun S, Gohring G, Hedlund A, Hast R, Schlegelberger B, Porwit A, Hellstrom-Lindberg E, Mufti GJ (2011) TP53 mutations in low-risk myelodysplastic syndromes with del(5q) predict disease progression. J Clin Oncol 29(15):1971–1979. doi:10.1200/JCO.2010.31.8576

    Article  PubMed  Google Scholar 

  62. Caceres G, McGraw K, Yip BH, Pellagatti A, Johnson J, Zhang L, Liu K, Zhang LM, Fulp WJ, Lee JH, Al Ali NH, Basiorka A, Smith LJ, Daugherty FJ, Littleton N, Wells RA, Sokol L, Wei S, Komrokji RS, Boultwood J, List AF (2013) TP53 suppression promotes erythropoiesis in del(5q) MDS, suggesting a targeted therapeutic strategy in lenalidomide-resistant patients. Proc Natl Acad Sci U S A 110(40):16127–16132. doi:10.1073/pnas.1311055110

    Article  PubMed Central  PubMed  Google Scholar 

  63. Liu DG-YJM (2013) Lenalidomide, p53 and del(5q) Myelodysplastic syndrome: ribosome stress relief. Int Blood Res Rev 1(1):14–21, 2013, Article no. IBRR.2013.002

    Google Scholar 

  64. Giagounidis AA, Kulasekararaj A, Germing U, Radkowski R, Haase S, Petersen P, Gohring G, Busche G, Aul C, Mufti GJ, Platzbecker U (2012) Long-term transfusion independence in del(5q) MDS patients who discontinue lenalidomide. Leukemia 26(4):855–858. doi:10.1038/leu.2011.268

    Article  PubMed  CAS  Google Scholar 

  65. Tehranchi R, Woll PS, Anderson K, Buza-Vidas N, Mizukami T, Mead AJ, Astrand-Grundstrom I, Strombeck B, Horvat A, Ferry H, Dhanda RS, Hast R, Ryden T, Vyas P, Gohring G, Schlegelberger B, Johansson B, Hellstrom-Lindberg E, List A, Nilsson L, Jacobsen SE (2010) Persistent malignant stem cells in del(5q) myelodysplasia in remission. N Engl J Med 363(11):1025–1037. doi:10.1056/NEJMoa0912228

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of Interest

Gaballa MR declares no conflict of interest. Besa EC participated in an advisory board for Celgene.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud R. Gaballa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaballa, M.R., Besa, E.C. Myelodysplastic syndromes with 5q deletion: pathophysiology and role of lenalidomide. Ann Hematol 93, 723–733 (2014). https://doi.org/10.1007/s00277-014-2022-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-014-2022-3

Keywords

Navigation