Skip to main content
Log in

Ionomycin inhibits Jurkat T cell behaviors in the presence of phorbol-12,13-dibutyrate

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Ionomycin in conjunction with phorbol-12,13-dibutyrate (PDBu) is conventionally used as a stimulator to activate cells, especially original T cells. But we accidently found it had an entirely opposite action on malignant tumor cells derived from T cells. Thus, influence of ionomycin on human leukemia Jurkat T cell behaviors and its preliminary mechanistic process were explored in the presence of PDBu. Ionomycin could remarkably inhibit colony formation of the cells, and inhibitory rate of the cell proliferation was increased with ionomycin treatment in a dose- or time-related relationship, following the reduction of ERK1/2 and phosphorylated-ERK1/2 levels. However, a high dose of ionomycin might moderately repress mid-stage activation of the cells. It also blocked the cell entry at S-phase and G2/M-phase with the attenuation of transforming growth factor-β (TGF-β) level in the cells, and promoted the cell apoptosis following the augment of caspase-3 and cleaved caspase-3 in the cells. The dramatic elevation of [Ca2+]i and intracellular pH (pHi) was simultaneously followed by the above alteration of the cell behaviors. These results indicate that ionomycin may strongly inhibit human acute T lymphocyte leukemia progress in the presence of PDBu through the inhibition of ERK1/2 signaling, the activation of caspase-3 and the attenuation of TGF-β mediated by the [Ca2+]i and pHi enhancement, providing a novel insight into function and potential application of both ionomycin and PDBu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu C, Hermann TE (1978) Characterization of ionomycin as a calcium ionophore. J Biol Chem 253:5892–5894

    PubMed  CAS  Google Scholar 

  2. Purkiss JR, Willars GB (1996) Ionomycin induced changes in intracellular free calcium in SH-SY5Y human neuroblastoma cells: sources of calcium and effects on [3H]-noradrenaline release. Cell Calcium 20:21–29

    Article  PubMed  CAS  Google Scholar 

  3. Ding R, Tang J, Gao H, Li T, Zhou H et al (2012) New methymycin derivatives of Streptomyces venezuelae ATCC 15439 and their inhibitory effects on human T cell proliferation mediated by PMA/ionomycin. Arch Pharm Res 35:1567–1572

    Article  PubMed  CAS  Google Scholar 

  4. Gao M, Jin W, Qian Y, Ji L, Feng G et al (2011) Effect of N-methyl-d-aspartate receptor antagonist on T helper cell differentiation induced by phorbol-myristate-acetate and ionomycin. Cytokine 56:458–465

    Article  PubMed  CAS  Google Scholar 

  5. Stankov K, Bogdanovic G, Stankov S, Draskovic D, Grubor-Lajsic G et al (2012) Expression analysis of genes involved in apoptosis, proliferation and endoplasmic reticulum stress in ionomycin/PMA treated Jurkat cells. J BUON 17:369–376

    PubMed  CAS  Google Scholar 

  6. Park HJ, Makepeace CM, Lyons JC, Song CW (1996) Effect of intracellular acidity and ionomycin on apoptosis in HL-60 cells. Eur J Cancer 32A:540–546

    Article  PubMed  CAS  Google Scholar 

  7. Abraham RT, Weiss A (2004) Jurkat T cells and development of the T-cell receptor signalling paradigm. Nat Rev Immunol 4:301–308

    Article  PubMed  CAS  Google Scholar 

  8. Guegan JP, Fremin C, Baffet G (2012) The MAPK MEK1/2-ERK1/2 pathway and its implication in hepatocyte cell cycle control. Int J Hepatol 2012:328372

    Article  PubMed Central  PubMed  Google Scholar 

  9. Meloche S, Pouysségur J (2007) The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene 26:3227–3239

    Article  PubMed  CAS  Google Scholar 

  10. Parra E (2011) Activation of MAP kinase family members triggered by TPA or ionomycin occurs via the protein phosphatase 4 pathway in Jurkat leukemia T cells. Mol Med Rep 5:773–778

    PubMed  Google Scholar 

  11. Piek E, Heldin CH, Ten Dijke P (1999) Specificity, diversity, and regulation in TGF-beta superfamily signaling. FASEB J 13:2105–2124

    PubMed  CAS  Google Scholar 

  12. Ring CJ, Cho KW (1999) Insights from model systems specificity in transforming growth factor-beta signaling pathways. Am J Hum Genet 64:691–697

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Song BC, Chung YH, Kim JA et al (2002) Transforming growth factor-beta1 as a useful serologic marker of small hepatocellular carcinoma. Cancer 94:175–180

    Article  PubMed  CAS  Google Scholar 

  14. Lin CM, Wang FH, Lee PK (2002) Activated human CD4(+) T cells induced by dendritic cell stimulation are most sensitive to transforming growth factor-beta: Implications for dendritic cell immunization against cancer. Clin Immunol 102:96–105

    Article  PubMed  CAS  Google Scholar 

  15. Massagué J (2008) TGFβ in cancer. Cell 134:215–230

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Decker P, Muller S (2002) Modulating poly(ADP-ribose) polymerase activity: potential for the prevention and therapy of pathogenic situations involving DNA damage and oxidative stress. Curr Pharm Biotechnol 3:275–283

    Article  PubMed  CAS  Google Scholar 

  17. Yoshida H, Hirono C, Shimamoto C, Daikoku E, Kubota T et al (2010) Membrane potential modulation of ionomycin-stimulated Ca(2+) entry via Ca (2+)/H (+) exchange and SOC in rat submandibular acinar cells. J Physiol Sci 60:363–371

    Article  PubMed  CAS  Google Scholar 

  18. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    Article  PubMed  CAS  Google Scholar 

  19. Rizzuto R, Pinton P, Ferrari D et al (2003) Calcium and apoptosis: facts and hypotheses. Oncogene 22:8619–8627

    Article  PubMed  CAS  Google Scholar 

  20. Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552–565

    Article  PubMed  CAS  Google Scholar 

  21. Khadra N, Bresson-Bepoldin L, Penna A et al (2011) CD95 triggers Orai1-mediated localized Ca2+ entry, regulates recruitment of protein kinase C (PKC) beta2, and prevents death-inducing signaling complex formation. Proc Natl Acad Sci U S A 108:19072–19077

    Article  PubMed Central  PubMed  Google Scholar 

  22. Mukherjee S, Trice J, Shinde P, Willis RE, Pressley TA et al (2013) Ca2+ oscillations, Ca2+ sensitization, and contraction activated by protein kinase C in small airway smooth muscle. J Gen Physiol 141:165–178

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Rivera J (2002) Molecular adapters in FcεRI signaling and the allergic response. Curr Opin Immunol 14:688–693

    Article  PubMed  CAS  Google Scholar 

  24. Abdel-Raheem IT, Hide I, Yanase Y et al (2005) Protein kinase C-alpha mediates TNF release process in RBL-2H3 mast cells. Br J Pharmacol 145:415–423

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Hanson DA, Ziegler SF (2002) Regulation of ionomycin-mediated granule release from rat basophil leukemia cells. Mol Immunol 38:1329–1335

    Article  PubMed  CAS  Google Scholar 

  26. Aggarwal BB, Shishodia S, Ashikawa K, Bharti AC (2002) The role of TNF and its family members in inflammation and cancer: lessons from gene deletion. Curr Drug Targets Inflamm Allergy 1:327–341

    Article  PubMed  CAS  Google Scholar 

  27. Pfeffer K (2003) Biological functions of tumor necrosis factor cytokines and their receptors. Cytokine Growth Factor Rev 14:185–191

    Article  PubMed  CAS  Google Scholar 

  28. Borst SE (2004) The role of TNF-alpha in insulin resistance. Endocrine 23:177–182

    Article  PubMed  CAS  Google Scholar 

  29. Vermeulen MA, de Jong J, Vaessen MJ, van Leeuwen PA, Houdijk AP (2011) Glutamate reduces experimental intestinal hyperpermeability and facilitates glutamine support of gut integrity. World J Gastroenterol 17:1569–1573

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Maish MS, Carballo M, Yetasook A (2011) Phorbol 12,13 dibutyrate behaves in a tumor-inhibitory manner in esophageal adenocarcinoma cell lines. Dis Esophagus 24:611–616

    Article  PubMed  CAS  Google Scholar 

  31. Trump BF, Berezesky IK (1995) Calcium-mediated cell injury and cell death. FASEB J 9:219–228

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundations of China (No 81172824, No 30971465, No 30471635).

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Liu or Feiyue Xing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Hao, W., Xing, R. et al. Ionomycin inhibits Jurkat T cell behaviors in the presence of phorbol-12,13-dibutyrate. Ann Hematol 93, 735–746 (2014). https://doi.org/10.1007/s00277-013-1955-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-013-1955-2

Keywords

Navigation