Skip to main content

Advertisement

Log in

Targeting connective tissue growth factor (CTGF) in acute lymphoblastic leukemia preclinical models: anti-CTGF monoclonal antibody attenuates leukemia growth

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Connective tissue growth factor (CTGF/CCN2) is involved in extracellular matrix production, tumor cell proliferation, adhesion, migration, and metastasis. Recent studies have shown that CTGF expression is elevated in precursor B-acute lymphoblastic leukemia (ALL) and that increased expression of CTGF is associated with inferior outcome in B-ALL. In this study, we characterized the functional role and downstream signaling pathways of CTGF in ALL cells. First, we utilized lentiviral shRNA to knockdown CTGF in RS4;11 and REH ALL cells expressing high levels of CTGF mRNA. Silencing of CTGF resulted in significant suppression of leukemia cell growth compared to control vector, which was associated with AKT/mTOR inactivation and increased levels of cyclin-dependent kinase inhibitor p27. CTGF knockdown sensitized ALL cells to vincristine and methotrexate. Treatment with an anti-CTGF monoclonal antibody, FG-3019, significantly prolonged survival of mice injected with primary xenograft B-ALL cells when co-treated with conventional chemotherapy (vincristine, L-asparaginase and dexamethasone). Data suggest that CTGF represents a targetable molecular aberration in B-ALL, and blocking CTGF signaling in conjunction with administration of chemotherapy may represent a novel therapeutic approach for ALL patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Leask A, Abraham DJ (2006) All in the CCN family: essential matricellular signaling modulators emerge from the bunker. J Cell Sci 119(Pt 23):4803–4810

    Article  CAS  PubMed  Google Scholar 

  2. Dhar A, Ray A (2010) The CCN family proteins in carcinogenesis. Exp Oncol 32(1):2–9

    CAS  PubMed  Google Scholar 

  3. Hall-Glenn F, Lyons KM (2011) Roles for CCN2 in normal physiological processes. Cell Mol Life Sci 68(19):3209–3217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordón-Cardo C et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3(6):537–549

    Article  CAS  PubMed  Google Scholar 

  5. Xie D, Yin D, Wang HJ, Liu GT, Elashoff R, Black K et al (2004) Levels of expression of CYR61 and CTGF are prognostic for tumor progression and survival of individuals with gliomas. Clin Cancer Res 10(6):2072–2081

    Article  CAS  PubMed  Google Scholar 

  6. Koliopanos A, Friess H, di Mola FF, Tang WH, Kubulus D, Brigstock D et al (2002) Connective tissue growth factor gene expression alters tumor progression in esophageal cancer. World J Surg 26(4):420–427

    Article  PubMed  Google Scholar 

  7. Bennewith KL, Huang X, Ham CM, Graves EE, Erler JT, Kambham N et al (2009) The role of tumor cell-derived connective tissue growth factor (CTGF/CCN2) in pancreatic tumor growth. Cancer Res 69(3):775–784

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Aikawa T, Gunn J, Spong SM, Klaus SJ, Korc M (2006) Connective tissue growth factor-specific antibody attenuates tumor growth, metastasis, and angiogenesis in an orthotopic mouse model of pancreatic cancer. Mol Cancer Ther 5(5):1108–1116

    Article  CAS  PubMed  Google Scholar 

  9. Shakunaga T, Ozaki T, Ohara N, Asaumi K, Doi T, Nishida K et al (2000) Expression of connective tissue growth factor in cartilaginous tumors. Cancer 89(7):1466–1473

    Article  CAS  PubMed  Google Scholar 

  10. Chen PP, Li WJ, Wang Y, Zhao S, Li DY, Feng LY et al (2007) Expression of Cyr61, CTGF, and WISP-1 correlates with clinical features of lung cancer. PLoS One 2(6):e534

    Article  PubMed Central  PubMed  Google Scholar 

  11. Lai D, Ho KC, Hao Y, Yang X (2011) Taxol resistance in breast cancer cells is mediated by the hippo pathway component TAZ and its downstream transcriptional targets Cyr61 and CTGF. Cancer Res 71(7):2728–2738

    Article  CAS  PubMed  Google Scholar 

  12. Wang MY, Chen PS, Prakash E, Hsu HC, Huang HY, Lin MT et al (2009) Connective tissue growth factor confers drug resistance in breast cancer through concomitant up-regulation of Bcl-xL and cIAP1. Cancer Res 69(8):3482–3491

    Article  CAS  PubMed  Google Scholar 

  13. Chen PS, Wang MY, Wu SN, Su JL, Hong CC, Chuang SE et al (2007) CTGF enhances the motility of breast cancer cells via an integrin-alphavbeta3-ERK1/2-dependent S100A4-upregulated pathway. J Cell Sci 120(Pt 12):2053–2065

    Article  CAS  PubMed  Google Scholar 

  14. Yin D, Chen W, O'Kelly J, Lu D, Ham M, Doan NB et al (2010) Connective tissue growth factor associated with oncogenic activities and drug resistance in glioblastoma multiforme. Int J Cancer 127(10):2257–2267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Vorwerk P, Wex H, Hohmann B, Oh Y, Rosenfeld RG, Mittler U (2000) CTGF (IGFBP-rP2) is specifically expressed in malignant lymphoblasts of patients with acute lymphoblastic leukaemia (ALL). Br J Cancer 83(6):756–760

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Tesfai Y, Ford J, Carter KW, Firth MJ, O'Leary RA, Gottardo NG et al (2012) Interactions between acute lymphoblastic leukemia and bone marrow stromal cells influence response to therapy. Leuk Res 36(3):299–306

    Article  CAS  PubMed  Google Scholar 

  17. Boag JM, Beesley AH, Firth MJ, Freitas JR, Ford J, Brigstock DR et al (2007) High expression of connective tissue growth factor in pre-B acute lymphoblastic leukaemia. Br J Haematol 138(6):740–748

    Article  CAS  PubMed  Google Scholar 

  18. Sala-Torra O, Gundacker HM, Stirewalt DL, Ladne PA, Pogosova-Agadjanyan EL, Slovak ML et al (2007) Connective tissue growth factor (CTGF) expression and outcome in adult patients with acute lymphoblastic leukemia. Blood 109(7):3080–3083

    CAS  PubMed  Google Scholar 

  19. Kang H, Chen IM, Wilson CS, Bedrick EJ, Harvey RC, Atlas SR et al (2010) Gene expression classifiers for relapse-free survival and minimal residual disease improve risk classification and outcome prediction in pediatric B-precursor acute lymphoblastic leukemia. Blood 115(7):1394–1405

    Article  CAS  PubMed  Google Scholar 

  20. Liem NL, Papa RA, Milross CG, Schmid MA, Tajbakhsh M, Choi S et al (2004) Characterization of childhood acute lymphoblastic leukemia xenograft models for the preclinical evaluation of new therapies. Blood 103(10):3905–3914

    Article  CAS  PubMed  Google Scholar 

  21. Crean JK, Furlong F, Mitchell D, McArdle E, Godson C, Martin F (2006) Connective tissue growth factor/CCN2 stimulates actin disassembly through Akt/protein kinase B-mediated phosphorylation and cytoplasmic translocation of p27 (Kip-1). FASEB J 20(10):1712–1714

    Article  CAS  PubMed  Google Scholar 

  22. Crawford LA, Guney MA, Oh YA, Deyoung RA, Valenzuela DM, Murphy AJ et al (2009) Connective tissue growth factor (CTGF) inactivation leads to defects in islet cell lineage allocation and beta-cell proliferation during embryogenesis. Mol Endocrinol 23(3):324–336

    Article  CAS  PubMed  Google Scholar 

  23. Dornhöfer N, Spong S, Bennewith K, Salim A, Klaus S, Kambham N et al (2006) Connective tissue growth factor-specific monoclonal antibody therapy inhibits pancreatic tumor growth and metastasis. Cancer Res 66(11):5816–5827

    Article  PubMed  Google Scholar 

  24. Szymanska B, Wilczynska-Kalak U, Kang MH, Liem NL, Carol H, Boehm I et al (2012) Pharmacokinetic modeling of an induction regimen for in vivo combined testing of novel drugs against pediatric acute lymphoblastic leukemia xenografts. PLoS One 7(3):e33894

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Zanette DL, Rivadavia F, Molfetta GA, Barbuzano FG, Proto-Siqueira R, Silva-Jr WA et al (2007) miRNA expression profiles in chronic lymphocytic and acute lymphocytic leukemia. Braz J Med Biol Res 40(11):1435–1440

    Article  CAS  PubMed  Google Scholar 

  26. Schotte D, Chau JC, Sylvester G, Liu G, Chen C, van der Velden VH et al (2009) Identification of new microRNA genes and aberrant microRNA profiles in childhood acute lymphoblastic leukemia. Leukemia 23(2):313–322

    Article  CAS  PubMed  Google Scholar 

  27. Hong KH, Yoo SA, Kang SS, Choi JJ, Kim WU, Cho CS (2006) Hypoxia induces expression of connective tissue growth factor in scleroderma skin fibroblasts. Clin Exp Immunol 146(2):362–370

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Recchia AG, De Francesco EM, Vivacqua A, Sisci D, Panno ML, Andò S et al (2011) The G protein-coupled receptor 30 is up-regulated by hypoxia-inducible factor-1alpha (HIF-1alpha) in breast cancer cells and cardiomyocytes. J Biol Chem 286(12):10773–10782

    Article  CAS  PubMed  Google Scholar 

  29. Kondo S, Kubota S, Mukudai Y, Moritani N, Nishida T, Matsushita H et al (2006) Hypoxic regulation of stability of connective tissue growth factor/CCN2 mRNA by 3′-untranslated region interacting with a cellular protein in human chondrosarcoma cells. Oncogene 25(7):1099–1110

    Article  CAS  PubMed  Google Scholar 

  30. Benito J, Shi Y, Szymanska B, Carol H, Boehm I, Lu H et al (2011) Pronounced hypoxia in models of murine and human leukemia: high efficacy of hypoxia-activated prodrug PR-104. PLoS One 6(8):e23108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Perbal B (2004) CCN proteins: multifunctional signalling regulators. Lancet 363(9402):62–64

    Article  CAS  PubMed  Google Scholar 

  32. Debili N, Robin C, Schiavon V, Letestu R, Pflumio F, Mitjavila-Garcia MT et al (2001) Different expression of CD41 on human lymphoid and myeloid progenitors from adults and neonates. Blood 97(7):2023–2030

    Article  CAS  PubMed  Google Scholar 

  33. Corbel C, Salaün J (2002) AlphaIIb integrin expression during development of the murine hemopoietic system. Dev Biol 243(2):301–311

    Article  CAS  PubMed  Google Scholar 

  34. Mitjavila-Garcia MT, Cailleret M, Godin I, Nogueira MM, Cohen-Solal K, Schiavon V et al (2002) Expression of CD41 on hematopoietic progenitors derived from embryonic hematopoietic cells. Development 129(8):2003–2013

    CAS  PubMed  Google Scholar 

  35. Adler SG, Schwartz S, Williams ME, Arauz-Pacheco C, Bolton WK, Lee T et al (2010) Phase 1 study of anti-CTGF monoclonal antibody in patients with diabetes and microalbuminuria. Clin J Am Soc Nephrol 5(8):1420–1428

    Article  CAS  PubMed  Google Scholar 

  36. Heestand GM, Pipas JM, Valone F, McMullen AD, Gadea P, Williams D et al (2011) A phase I trial of the monoclonal antibody FG-3019 to connective tissue growth factor (CTGF) in locally advanced or metastatic pancreatic cancer [Abstract]. J Clin Oncol 29(Suppl. 4): Abstract 269

    Google Scholar 

  37. Hartel M, Di Mola FF, Gardini A, Zimmermann A, Di Sebastiano P, Guweidhi A et al (2004) Desmoplastic reaction influences pancreatic cancer growth behavior. World J Surg 28(8):818–825

    Article  PubMed  Google Scholar 

  38. Ueno H, Sakita-Ishikawa M, Morikawa Y, Nakano T, Kitamura T, Saito M (2003) A stromal cell-derived membrane protein that supports hematopoietic stem cells. Nat Immunol 4(5):457–463

    Article  CAS  PubMed  Google Scholar 

  39. Battula VL, Cabreira M, Wang Z, Ma W, Benito J, Ruvolo PP et al (2010) Connective tissue growth factor (CTGF) is essential for self renewal and proliferation of mesenchymal stromal cells (MSCs) and affects leukemia-stromal interactions [Abstract]. Blood 116(21):1573, Abstract 3845

    Google Scholar 

Download references

Acknowledgments

This study is supported in part by grants from the National Institutes of Health Lymphoma SPORE (CA136411), P01 “The Therapy of AML” (CA55164), Leukemia SPORE (CA100632), Cancer Center Support Grant (CA16672), the Paul and Mary Haas Chair in Genetics (M. Andreeff) and by 1R01CA155056-01, CDP-01, Leukemia and Lymphoma Society and DRP, and Leukemia Spore 5 P50 CA100632-08 (to M. Konopleva).

Conflict of interest

S.S. is an employee of FibroGen, a biopharmaceutical company that develops anti-CTGF monoclonal antibody.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Konopleva.

Additional information

Hongbo Lu and Kensuke Kojima contributed equally to this project.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. S1

CTGF knockdown inhibits REH cell proliferation. (a) Growth curves of REH cells expressing either empty vector (EV) or CTGF shRNA (shCTGF). Statistically significant differences are denoted as follows: **p < 0.01, ***p < 0.001. (b) Cell cycle profiles of REH cells expressing either empty vector (EV) or CTGF shRNA (shCTGF). (DOC 446 kb) (DOC 446 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, H., Kojima, K., Battula, V.L. et al. Targeting connective tissue growth factor (CTGF) in acute lymphoblastic leukemia preclinical models: anti-CTGF monoclonal antibody attenuates leukemia growth. Ann Hematol 93, 485–492 (2014). https://doi.org/10.1007/s00277-013-1939-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-013-1939-2

Keywords

Navigation