Annals of Hematology

, Volume 92, Issue 6, pp 759–769 | Cite as

Hematologic malignancies with PCM1-JAK2 gene fusion share characteristics with myeloid and lymphoid neoplasms with eosinophilia and abnormalities of PDGFRA, PDGFRB, and FGFR1

  • Verena Patterer
  • Susanne Schnittger
  • Wolfgang Kern
  • Torsten Haferlach
  • Claudia Haferlach
Original Article

Abstract

The translocation t(8;9)(p22;p24) is a rare event that results in the fusion of JAK2 to PCM1 and thus leads to the activation of the Janus Kinase 2. In 2008, the WHO introduced a new entity called “Myeloid and lymphoid neoplasms with eosinophilia and abnormalities of PDGFRA, PDGFRB or FGFR1”, which are characterized by the formation of a fusion gene encoding an aberrant tyrosine kinase. These disorders share characteristics with myeloproliferative neoplasms and typically show an eosinophilia. We here now report on 6 new cases with PCM1-JAK2 fusion. These patients show characteristics with respect to epidemiology, clinical presentation, and genetic changes that are very similar to patients with rearrangements of PDGFRA, PDGFRB, or FGFR1. Our data suggests the integration of cases with JAK2-PCM1 fusion in the respective WHO category of myeloid and lymphoid neoplasms with eosinophilia and abnormalities of PDGFRA, PDGFRB, or FGFR1.

Keywords

PCM1-JAK2 MPN FGFR PDGFR PDGFRA 

Reference

  1. 1.
    Reiter A, Walz C, Watmore A, Schoch C, Blau I, Schlegelberger B, Berger U, Telford N, Aruliah S, Yin JA, Vanstraelen D, Barker HF, Taylor PC, O'Driscoll A, Benedetti F, Rudolph C, Kolb HJ, Hochhaus A, Hehlmann R, Chase A, Cross NC (2005) The t(8;9)(p22;p24) is a recurrent abnormality in chronic and acute leukemia that fuses PCM1 to JAK2. Cancer Res 65:2662–2667PubMedCrossRefGoogle Scholar
  2. 2.
    Verma A, Kambhampati S, Parmar S, Platanias LC (2003) Jak family of kinases in cancer. Cancer Metastasis Rev 22:423–434PubMedCrossRefGoogle Scholar
  3. 3.
    Yamaoka K, Saharinen P, Pesu M, Holt VE III, Silvennoinen O, O'Shea JJ (2004) The Janus kinases (Jaks). Genome Biol 5:253PubMedCrossRefGoogle Scholar
  4. 4.
    Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, Tichelli A, Cazzola M, Skoda RC (2005) A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 352:1779–1790PubMedCrossRefGoogle Scholar
  5. 5.
    Balczon R, Bao L, Zimmer WE (1994) PCM-1, A 228-kD centrosome autoantigen with a distinct cell cycle distribution. J Cell Biol 124:783–793PubMedCrossRefGoogle Scholar
  6. 6.
    Dammermann A, Merdes A (2002) Assembly of centrosomal proteins and microtubule organization depends on PCM-1. J Cell Biol 159:255–266PubMedCrossRefGoogle Scholar
  7. 7.
    Balczon R, Simerly C, Takahashi D, Schatten G (2002) Arrest of cell cycle progression during first interphase in murine zygotes microinjected with anti-PCM-1 antibodies. Cell Motil Cytoskeleton 52:183–192PubMedCrossRefGoogle Scholar
  8. 8.
    Lacronique V, Boureux A, Valle VD, Poirel H, Quang CT, Mauchauffe M, Berthou C, Lessard M, Berger R, Ghysdael J, Bernard OA (1997) A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 278:1309–1312PubMedCrossRefGoogle Scholar
  9. 9.
    Heisterkamp N, Stephenson JR, Groffen J, Hansen PF, de Klein A, Bartram CR, Grosveld G (1983) Localization of the c-ab1 oncogene adjacent to a translocation break point in chronic myelocytic leukaemia. Nature 306:239–242PubMedCrossRefGoogle Scholar
  10. 10.
    Baxter EJ, Hochhaus A, Bolufer P, Reiter A, Fernandez JM, Senent L, Cervera J, Moscardo F, Sanz MA, Cross NC (2002) The t(4;22)(q12;q11) in atypical chronic myeloid leukaemia fuses BCR to PDGFRA. Hum Mol Genet 11:1391–1397PubMedCrossRefGoogle Scholar
  11. 11.
    Baxter EJ, Kulkarni S, Vizmanos JL, Jaju R, Martinelli G, Testoni N, Hughes G, Salamanchuk Z, Calasanz MJ, Lahortiga I, Pocock CF, Dang R, Fidler C, Wainscoat JS, Boultwood J, Cross NC (2003) Novel translocations that disrupt the platelet-derived growth factor receptor beta (PDGFRB) gene in BCR-ABL-negative chronic myeloproliferative disorders. Br J Haematol 120:251–256PubMedCrossRefGoogle Scholar
  12. 12.
    Reiter A, Sohal J, Kulkarni S, Chase A, Macdonald DH, Aguiar RC, Goncalves C, Hernandez JM, Jennings BA, Goldman JM, Cross NC (1998) Consistent fusion of ZNF198 to the fibroblast growth factor receptor-1 in the t(8;13)(p11;q12) myeloproliferative syndrome. Blood 92:1735–1742PubMedGoogle Scholar
  13. 13.
    Adelaide J, Perot C, Gelsi-Boyer V, Pautas C, Murati A, Copie-Bergman C, Imbert M, Chaffanet M, Birnbaum D, Mozziconacci MJ (2006) A t(8;9) translocation with PCM1-JAK2 fusion in a patient with T-cell lymphoma. Leukemia 20:536–537PubMedCrossRefGoogle Scholar
  14. 14.
    Bousquet M, Quelen C, De Mas V, Duchayne E, Roquefeuil B, Delsol G, Laurent G, Dastugue N, Brousset P (2005) The t(8;9)(p22;p24) translocation in atypical chronic myeloid leukaemia yields a new PCM1-JAK2 fusion gene. Oncogene 24:7248–7252PubMedCrossRefGoogle Scholar
  15. 15.
    Murati A, Gelsi-Boyer V, Adelaide J, Perot C, Talmant P, Giraudier S, Lode L, Letessier A, Delaval B, Brunel V, Imbert M, Garand R, Xerri L, Birnbaum D, Mozziconacci MJ, Chaffanet M (2005) PCM1-JAK2 fusion in myeloproliferative disorders and acute erythroid leukemia with t(8;9) translocation. Leukemia 19:1692–1696PubMedCrossRefGoogle Scholar
  16. 16.
    Huang KP, Chase AJ, Cross NC, Reiter A, Li TY, Wang TF, Chu SC, Lu XY, Li CC, Kao RH (2008) Evolutional change of karyotype with t(8;9)(p22;p24) and HLA-DR immunophenotype in relapsed acute myeloid leukemia. Int J Hematol 88:197–201PubMedCrossRefGoogle Scholar
  17. 17.
    Huret JL, Senon S, Bernheim A, Dessen P (2004) An Atlas on genes and chromosomes in oncology and haematology. Cell Mol Biol (Noisy -le-grand) 50:805–807Google Scholar
  18. 18.
    Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW (2008) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. International Agency for Research on Cancer (IARC), LyonGoogle Scholar
  19. 19.
    MacDonald D, Reiter A, Cross NC (2002) The 8p11 myeloproliferative syndrome: a distinct clinical entity caused by constitutive activation of FGFR1. Acta Haematol 107:101–107PubMedCrossRefGoogle Scholar
  20. 20.
    Steer EJ, Cross NC (2002) Myeloproliferative disorders with translocations of chromosome 5q31-35: role of the platelet-derived growth factor receptor Beta. Acta Haematol 107:113–122PubMedCrossRefGoogle Scholar
  21. 21.
    Cools J, DeAngelo DJ, Gotlib J, Stover EH, Legare RD, Cortes J, Kutok J, Clark J, Galinsky I, Griffin JD, Cross NC, Tefferi A, Malone J, Alam R, Schrier SL, Schmid J, Rose M, Vandenberghe P, Verhoef G, Boogaerts M, Wlodarska I, Kantarjian H, Marynen P, Coutre SE, Stone R, Gilliland DG (2003) A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med 348:1201–1214PubMedCrossRefGoogle Scholar
  22. 22.
    Baccarani M, Cilloni D, Rondoni M, Ottaviani E, Messa F, Merante S, Tiribelli M, Buccisano F, Testoni N, Gottardi E, de Vivo A, Giugliano E, Iacobucci I, Paolini S, Soverini S, Rosti G, Rancati F, Astolfi C, Pane F, Saglio G, Martinelli G (2007) The efficacy of imatinib mesylate in patients with FIP1L1-PDGFRalpha-positive hypereosinophilic syndrome. Results of a multicenter prospective study Haematologica 92:1173–1179Google Scholar
  23. 23.
    Apperley JF, Gardembas M, Melo JV, Russell-Jones R, Bain BJ, Baxter EJ, Chase A, Chessells JM, Colombat M, Dearden CE, Dimitrijevic S, Mahon FX, Marin D, Nikolova Z, Olavarria E, Silberman S, Schultheis B, Cross NC, Goldman JM (2002) Response to imatinib mesylate in patients with chronic myeloproliferative diseases with rearrangements of the platelet-derived growth factor receptor beta. N Engl J Med 347:481–487PubMedCrossRefGoogle Scholar
  24. 24.
    Castaigne S, Berger R, Jolly V, Daniel MT, Bernheim A, Marty M, Degos L, Flandrin G (1984) Promyelocytic blast crisis of chronic myelocytic leukemia with both t(9;22) and t(15;17) in M3 cells. Cancer 54:2409–2413PubMedCrossRefGoogle Scholar
  25. 25.
    Secker-Walker LM, Morgan GJ, Min T, Swansbury GJ, Craig J, Yamada T, Desalvo L, Medina JW, Chowdhury V, Donahue RP, Polliack A, Catovsky D (1992) Inversion of chromosome 16 with the Philadelphia chromosome in acute myelomonocytic leukemia with eosinophilia. Report of two cases. Cancer Genet Cytogenet 58:29–34PubMedCrossRefGoogle Scholar
  26. 26.
    Robyn J, Lemery S, McCoy JP, Kubofcik J, Kim YJ, Pack S, Nutman TB, Dunbar C, Klion AD (2006) Multilineage involvement of the fusion gene in patients with FIP1L1/PDGFRA-positive hypereosinophilic syndrome. Br J Haematol 132:286–292PubMedCrossRefGoogle Scholar
  27. 27.
    Chaffanet M, Popovici C, Leroux D, Jacrot M, Adelaide J, Dastugue N, Gregoire MJ, Hagemeijer A, Lafage-Pochitaloff M, Birnbaum D, Pebusque MJ (1998) t(6;8), t(8;9) and t(8;13) translocations associated with stem cell myeloproliferative disorders have close or identical breakpoints in chromosome region 8p11-12. Oncogene 16:945–949PubMedCrossRefGoogle Scholar
  28. 28.
    Griesinger F, Hennig H, Hillmer F, Podleschny M, Steffens R, Pies A, Wormann B, Haase D, Bohlander SK (2005) A BCR-JAK2 fusion gene as the result of a t(9;22)(p24;q11.2) translocation in a patient with a clinically typical chronic myeloid leukemia. Genes Chromosomes Cancer 44:329–333PubMedCrossRefGoogle Scholar
  29. 29.
    Nebral K, Denk D, Attarbaschi A, Konig M, Mann G, Haas OA, Strehl S (2009) Incidence and diversity of PAX5 fusion genes in childhood acute lymphoblastic leukemia. Leukemia 23:134–143PubMedCrossRefGoogle Scholar
  30. 30.
    Poitras JL, Dal CP, Aster JC, DeAngelo DJ, Morton CC (2008) Novel SSBP2-JAK2 fusion gene resulting from a t(5;9)(q14.1;p24.1) in pre-B acute lymphocytic leukemia. Genes Chromosomes Cancer 47:884–889PubMedCrossRefGoogle Scholar
  31. 31.
    Chase A, Bryant C, Score J, Haferlach C, Grossmann V, Schwaab J, Hofmann WK, Reiter A, Cross NC (2012) Ruxolitinib as potential targeted therapy for patients with JAK2 rearrangements. Haematologica. doi:10.3324/haematol.2012.067959
  32. 32.
    Gozgit JM, Wong MJ, Wardwell S, Tyner JW, Loriaux MM, Mohemmad QK, Narasimhan NI, Shakespeare WC, Wang F, Druker BJ, Clackson T, Rivera VM (2011) Potent activity of ponatinib (AP24534) in models of FLT3-driven acute myeloid leukemia and other hematologic malignancies. Mol Cancer Ther 10:1028–1035PubMedCrossRefGoogle Scholar
  33. 33.
    Lierman E, Smits S, Cools J, Dewaele B, biec-Rychter M, Vandenberghe P (2012) Ponatinib is active against imatinib-resistant mutants of FIP1L1-PDGFRA and KIT, and against FGFR1-derived fusion kinases. Leukemia 26:1693–1695PubMedCrossRefGoogle Scholar
  34. 34.
    Ren M, Qin H, Ren R, Cowell JK (2013) Ponatinib suppresses the development of myeloid and lymphoid malignancies associated with FGFR1 abnormalities. Leukemia 27:32–40PubMedCrossRefGoogle Scholar
  35. 35.
    Chase A, Bryant C, Score J, Cross NC (2013) Ponatinib as targeted therapy for FGFR1 fusions associated with the 8p11 myeloproliferative syndrome. Haematologica 98:103–106PubMedCrossRefGoogle Scholar
  36. 36.
    Lierman E, Selleslag D, Smits S, Billiet J, Vandenberghe P (2012) Ruxolitinib inhibits transforming JAK2 fusion proteins in vitro and induces complete cytogenetic remission in t(8;9)(p22;p24)/PCM1-JAK2-positive chronic eosinophilic leukemia. Blood 120:1529–1531PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Verena Patterer
    • 1
  • Susanne Schnittger
    • 1
  • Wolfgang Kern
    • 1
  • Torsten Haferlach
    • 1
  • Claudia Haferlach
    • 1
    • 2
  1. 1.MLL Munich Leukemia LaboratoryMunichGermany
  2. 2.MLL Munich Leukemia Laboratory GmbHMunichGermany

Personalised recommendations