Skip to main content
Log in

Chronic lymphocytic leukemia cells induce anti-apoptotic effects of bone marrow stroma

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

The prolonged life span of chronic lymphocytic leukemia (CLL) cells in vivo is assumed to depend on the surrounding microenvironment since this biologic feature is lost in vitro. We studied here the molecular interactions between CLL cells and their surrounding stroma to identify factors that help CLL cells to resist apoptosis. Sorted CLL cells from 21 patients were cultured in vitro on allogenous, normal bone marrow stromal cells (BMSCs) in the presence/absence of CD40 ligand or in culture medium alone. Surface and mRNA expression of interaction molecules, cytokine production, and apoptosis rate was measured by flow cytometric, real-time PCR and standard immunologic assays. The interaction between CLL cells and BMSCs rescued CLL cells from apoptosis. BMSCs co-cultured with CLL cells showed a strong increase in IL-8 and IL-6 secretion and up-regulated the expression of ICAM-1 and CD40 mRNA. The mRNA expression of CXCL12 and VCAM1 remained unchanged. In turn, CLL cells in interaction with BMSCs significantly up-regulated the expression of CD18 and CD49d that are ligands for the critical adhesion molecules on BMSCs. As a validation of the in vitro data, we found a significant higher expression of CD49d on CLL cells in bone marrow aspirates compared to peripheral blood CLL cells in patient samples. Up-regulation of adhesion molecules and their ligands in CLL–BMSCs interaction along with the increased cytokine production of BMSCs indicate a strong effect of CLL cells on BMSCs in favor of their apoptosis resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kay NE, Hamblin TJ, Jelinek DF, Dewald GW, Byrd JC, Farag S et al (2002) Chronic lymphocytic leukemia. Hematology Am Soc Hematol Educ Program 193–213

  2. Kitada S, Andersen J, Akar S, Zapata JM, Takayama S, Krajewski S et al (1998) Expression of apoptosis-regulating proteins in chronic lymphocytic leukemia: correlations with in vitro and in vivo chemoresponses. Blood 91(9):3379–3389

    PubMed  CAS  Google Scholar 

  3. Collins RJ, Verschuer LA, Harmon BV, Prentice RL, Pope JH, Kerr JF (1989) Spontaneous programmed death (apoptosis) of B-chronic lymphocytic leukaemia cells following their culture in vitro. Br J Haematol 71(3):343–350

    Article  PubMed  CAS  Google Scholar 

  4. Lagneaux L, Delforge A, Bron D, de Bruyn C, Stryckmans P (1998) Chronic lymphocytic leukemic B cells but not normal B cells are rescued from apoptosis by contact with normal bone marrow stromal cells. Blood 91(7):2387–2396

    PubMed  CAS  Google Scholar 

  5. Jewell AP, Lydyard PM, Worman CP, Giles FJ, Goldstone AH (1995) Growth factors can protect B-chronic lymphocytic leukaemia cells against programmed cell death without stimulating proliferation. Leuk Lymphoma 18:159–162

    Article  PubMed  CAS  Google Scholar 

  6. Reittie JE, Yong KL, Panayiotidis P, Hoffbrand AV (1996) Interleukin-6 inhibits apoptosis and tumour necrosis factor induced proliferation of B-chronic lymphocytic leukaemia. Leuk Lymphoma 22:83–90

    Article  PubMed  CAS  Google Scholar 

  7. Schröttner P, Leick M, Burger M (2010) The role of chemokines in B-cell chronic lymphocytic leukemia cells: pathophysiological aspects and clinical impact. Ann Hematol 89(5):437–446

    Article  PubMed  Google Scholar 

  8. König A, Menzel T, Lynen S, Wrazel L, Rosén A, Al-Katib A, Raveche E, Gabrilove JL (1997) Basic fibroblast growth factor (bFGF) upregulates the expression of bcl-2 in B cell chronic lymphocytic leukemia cell lines resulting in delaying apoptosis. Leukemia 11(2):258–265

    Article  PubMed  Google Scholar 

  9. Kay NE, Bone ND, Tschumper RC, Howell KH, Geyer SM, Dewald GW, Hanson CA, Jelinek DF (2002) B-CLL cells are capable of synthesis and secretion of both pro- and anti-angiogenic molecules. Leukemia 16(5):911–919

    Article  PubMed  CAS  Google Scholar 

  10. Molica S, Vacca A, Ribatti D, Cuneo A, Cavazzini F, Levato D et al (2002) Prognostic value of enhanced bone marrow angiogenesis in early B-cell chronic lymphocytic leukemia. Blood 100(9):3344–3351

    Article  PubMed  CAS  Google Scholar 

  11. Kay NE, Shanafelt TD, Strege AK, Lee YK, Bone ND, Raza A (2007) Bone biopsy derived marrow stromal elements rescue chronic lymphocytic leukemia B-cells from spontaneous and drug induced cell death and facilitates an “angiogenic switch”. Leuk Res 31(7):899–906

    Article  PubMed  CAS  Google Scholar 

  12. Chanan-Khan A, Miller KC, Takeshita K, Koryzna A, Donohue K, Bernstein ZP et al (2005) Results of a phase 1 clinical trial of thalidomide in combination with fludarabine as initial therapy for patients with treatment-requiring chronic lymphocytic leukemia (CLL). Blood 106(10):3348–3352

    Article  PubMed  CAS  Google Scholar 

  13. Ferrajoli A, Lee BN, Schlette EJ, O'Brien SM, Gao H, Wen S et al (2008) Lenalidomide induces complete and partial remissions in patients with relapsed and refractory chronic lymphocytic leukemia. Blood 111(11):5291–5297

    Article  PubMed  CAS  Google Scholar 

  14. Schmid C, Isaacson PG (1994) Proliferation centres in B-cell malignant lymphoma, lymphocytic (B-CLL): an immunophenotypic study. Histopathology 24(5):445–451

    Article  PubMed  CAS  Google Scholar 

  15. Ghia P, Strola G, Granziero L, Geuna M, Guida G, Sallusto F et al (2002) Chronic lymphocytic leukemia B cells are endowed with the capacity to attract CD4+, CD40L+ T cells by producing CCL22. Eur J Immunol 32(5):1403–1413

    Article  PubMed  CAS  Google Scholar 

  16. Vega F, Medeiros LJ, Lang WH, Mansoor A, Bueso-Ramos C, Jones D (2002) The stromal composition of malignant lymphoid aggregates in bone marrow: variations in architecture and phenotype in different B-cell tumours. Br J Haematol 117(3):569–576

    Article  PubMed  Google Scholar 

  17. Plander M, Seegers S, Ugocsai P, Diermeier-Daucher S, Iványi J, Schmitz G, Hofstädter F, Schwarz S, Orsó E, Knüchel R, Brockhoff G (2009) Different proliferative and survival capacity of CLL-cells in a newly established in vitro model for pseudofollicles. Leukemia 23(11):2118–2128

    Article  PubMed  CAS  Google Scholar 

  18. Haniffa MA, Collin MP, Buckley CD, Dazzi F (2009) Mesenchymal stem cells: the fibroblasts' new clothes? Haematologica 94:258–263

    Article  PubMed  CAS  Google Scholar 

  19. Panayiotidis P, Jones D, Ganeshaguru K, Foroni L, Hoffbrand AV (1996) Human bone marrow stromal cells prevent apoptosis and support the survival of chronic lymphocytic leukaemia cells in vitro. Br J Haematol 92(1):97–103

    Article  PubMed  CAS  Google Scholar 

  20. Lagneaux L, Delforge A, De Bruyn C, Bernier M, Bron D (1999) Adhesion to bone marrow stroma inhibits apoptosis of chronic lymphocytic leukemia cells. Leuk Lymphoma 35(5–6):445–453

    Article  PubMed  CAS  Google Scholar 

  21. Burger JA, Burger M, Kipps TJ (1999) Chronic lymphocytic leukemia B cells express functional CXCR4 chemokine receptors that mediate spontaneous migration beneath bone marrow stromal cells. Blood 94(11):3658–3667

    PubMed  CAS  Google Scholar 

  22. Shanafelt TD, Geyer SM, Bone ND, Tschumper RC, Witzig TE, Nowakowski GS et al (2008) CD49d expression is an independent predictor of overall survival in patients with chronic lymphocytic leukemia: a prognostic parameter with therapeutic potential. Br J Haematol 140(5):537–546

    Article  PubMed  CAS  Google Scholar 

  23. Weber KS, Klickstein LB, Weber C (1999) Specific activation of leukocyte beta2 integrins lymphocyte function-associated antigen-1 and Mac-1 by chemokines mediated by distinct pathways via the alpha subunit cytoplasmic domains. Mol Biol Cell 10(4):861–873

    PubMed  CAS  Google Scholar 

  24. Röpke C, Gladstone P, Nielsen M, Borregaard N, Ledbetter JA, Svejgaard A, Odum N (1996) Apoptosis following interleukin-2 withdrawal from T cells: evidence for a regulatory role of CD18 (beta 2-integrin) molecules. Tissue Antigens 48(2):127–135

    Article  PubMed  Google Scholar 

  25. Wagner C, Hänsch GM, Stegmaier S, Denefleh B, Hug F, Schoels M (2001) The complement receptor 3, CR3 (CD11b/CD18), on T lymphocytes: activation-dependent up-regulation and regulatory function. Eur J Immunol 31(4):1173–1180

    Article  PubMed  CAS  Google Scholar 

  26. Hulkkonen J, Vilpo J, Vilpo L, Koski T, Hurme M (2000) Interleukin-1 beta, interleukin-1 receptor antagonist and interleukin-6 plasma levels and cytokine gene polymorphisms in chronic lymphocytic leukemia: correlation with prognostic parameters. Haematologica 85(6):600–606

    PubMed  CAS  Google Scholar 

  27. Meinhardt G, Wendtner CM, Hallek M (1999) Molecular pathogenesis of chronic lymphocytic leukemia: factors and signaling pathways regulating cell growth and survival. J Mol Med 77(2):282–293, Review

    Article  PubMed  CAS  Google Scholar 

  28. Springer TA (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76(2):301–314

    Article  PubMed  CAS  Google Scholar 

  29. Burger JA, Kipps TJ (2006) CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood 107(5):1761–1767

    Article  PubMed  CAS  Google Scholar 

  30. Fayad L, Keating MJ, Reuben JM, O'Brien S, Lee BN, Lerner S, Kurzrock R (2001) Interleukin-6 and interleukin-10 levels in chronic lymphocytic leukemia: correlation with phenotypic characteristics and outcome. Blood 97(1):256–263

    Article  PubMed  CAS  Google Scholar 

  31. Jewell AP, Worman CP, Giles FJ, Goldstone AH (1997) Serum levels of TNF, IL-6 and sCD23 correlate with changes in lymphocyte count in patients with B-cell chronic lymphocytic leukaemia receiving interferon-alpha therapy. Leuk Lymphoma 24(3–4):327–333

    PubMed  CAS  Google Scholar 

  32. Bojarska-Junak A, Hus I, Szczepanek EW, Dmoszyńska A, Roliński J (2008) Peripheral blood and bone marrow TNF and TNF receptors in early and advanced stages of B-CLL in correlation with ZAP-70 protein and CD38 antigen. Leuk Res 32(2):225–233

    Article  PubMed  CAS  Google Scholar 

  33. Wierda WG, Johnson MM, Do KA, Manshouri T, Dey A, O’Brien S et al (2003) Plasma interleukin 8 level predicts for survival in chronic lymphocytic leukaemia. Br J Haematol 120(3):452–456

    Article  PubMed  Google Scholar 

  34. Kara IO, Sahin B, Gunesacar R (2007) Expression of soluble CD27 and interleukins-8 and -10 in B-cell chronic lymphocytic leukemia: correlation with disease stage and prognosis. Adv Ther 24(1):29–40

    Article  PubMed  CAS  Google Scholar 

  35. Ennas MG, Moore PS, Zucca M, Angelucci E, Cabras MG, Melis M et al (2008) Interleukin-1B (IL1B) and interleukin-6 (IL6) gene polymorphisms are associated with risk of chronic lymphocytic leukaemia. Hematol Oncol 26(2):98–103

    Article  PubMed  CAS  Google Scholar 

  36. di Celle PF, Carbone A, Marchis D, Zhou D, Sozzani S, Zupo S, Pini M, Mantovani A, Foa R (1994) Cytokine gene expression in B-cell chronic lymphocytic leukemia: evidence of constitutive interleukin-8 (IL-8) mRNA expression and secretion of biologically active IL-8 protein. Blood 84(1):220–228

    PubMed  Google Scholar 

  37. Zheng Z, Venkatapathy S, Rao G, Harrington CA (2002) Expression profiling of B cell chronic lymphocytic leukemia suggests deficient CD1-mediated immunity, polarized cytokine response, altered adhesion and increased intracellular protein transport and processing of leukemic cells. Leukemia 16(12):2429–2437

    Article  PubMed  CAS  Google Scholar 

  38. Stratowa C, Löffler G, Lichter P, Stilgenbauer S, Haberl P, Schweifer N, Döhner H, Wilgenbus KK (2001) CDNA microarray gene expression analysis of B-cell chronic lymphocytic leukemia proposes potential new prognostic markers involved in lymphocyte trafficking. Int J Cancer 91(4):474–480

    Article  PubMed  CAS  Google Scholar 

  39. Cordingley FT, Bianchi A, Hoffbrand AV, Reittie JE, Heslop HE, Vyakarnam A, Turner M, Meager A, Brenner MK (1988) Tumour necrosis factor as an autocrine tumour growth factor for chronic B-cell malignancies. Lancet 1(8592):969–971

    Article  PubMed  CAS  Google Scholar 

  40. Lisignoli G, Toneguzzi S, Pozzi C, Piacentini A, Grassi F, Ferruzzi A, Gualtieri G, Facchini A (1999) Chemokine expression by subchondral bone marrow stromal cells isolated from osteoarthritis (OA) and rheumatoid arthritis (RA) patients. Clin Exp Immunol 116(2):371–378

    Article  PubMed  CAS  Google Scholar 

  41. Chauhan D, Uchiyama H, Akbarali Y, Urashima M, Yamamoto K, Libermann TA, Anderson KC (1996) Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-kappa B. Blood 87(3):1104–1112

    PubMed  CAS  Google Scholar 

  42. Binsky I, Haran M, Starlets D, Gore Y, Lantner F, Harpaz N et al (2007) IL-8 secreted in a macrophage migration-inhibitory factor- and CD74-dependent manner regulates B cell chronic lymphocytic leukemia survival. Proc Natl Acad Sci USA 104(33):13408–13413

    Article  PubMed  CAS  Google Scholar 

  43. Tretter T, Schuler M, Schneller F, Brass U, Esswein M, Aman MJ, Huber C, Peschel C (1998) Direct cellular interaction with activated CD4 T cells overcomes hyporesponsiveness of B-cell chronic lymphocytic leukemia in vitro. Cell Immunol 189(1):41–50

    Article  PubMed  CAS  Google Scholar 

  44. Abbas AK, Lichtman AH (2005) Cellular and molecular immunology, 5th edn. Elsevier Saunders, Philadelphia, PA, USA, p 173

    Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Kreuser, Department of Oncology and Hematology, Barmherzige Brüder Hospital, Regensburg for providing the patient samples. We thank Birgit Wilhelm and Harry Isslinger for their excellent technical assistance.

Funding

This work was supported by grants from the the Catholic Academic Exchange Service (KAAD), the Bavarian Research Foundation (BFS), the German Research Foundation SFB Transregio-13 Project, the Fraunhofer Project Group Regensburg and the LipidomicNet (FP7-HEALTH 2007-2.1.1.6-202272) project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Ugocsai.

Additional information

Márk Plander and Peter Ugocsai contributed equally to the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

Characterization of BMSCs. a Immunohistochemistry of BMCSs is positive for vimentin, but not for CD68 b mRNA expression in stromal cells. Bar graphs indicate high expression of VCAM-1, CXCL12, ICAM1, IL-6, and IL-8 and less, but detectable IL-1β, CD40, TNF-α. c Surface expression of antigens on stromal cells; mAb (black line), isotype control (broken line). d Secreted cytokines in supernatant. IL-6 and IL-8 is actively secreted, IL-1β and TNF-α to a lesser extent. Results for each mRNA expression and cytokine concentration are presented as mean ± percentiles of at least five independent experiments (PDF 130 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plander, M., Ugocsai, P., Seegers, S. et al. Chronic lymphocytic leukemia cells induce anti-apoptotic effects of bone marrow stroma. Ann Hematol 90, 1381–1390 (2011). https://doi.org/10.1007/s00277-011-1218-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-011-1218-z

Keywords

Navigation