Skip to main content
Log in

Alkylating chemotherapeutic agents cyclophosphamide and melphalan cause functional injury to human bone marrow-derived mesenchymal stem cells

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

The adverse effects of melphalan and cyclophosphamide on hematopoietic stem cells are well-known; however, the effects on the mesenchymal stem cells (MSCs) residing in the bone marrow are less well characterised. Examining the effects of chemotherapeutic agents on patient MSCs in vivo is difficult due to variability in patients and differences in the drug combinations used, both of which could have implications on MSC function. As drugs are not commonly used as single agents during high-dose chemotherapy (HDC) regimens, there is a lack of data comparing the short- or long-term effects these drugs have on patients post treatment. To help address these problems, the effects of the alkylating chemotherapeutic agents cyclophosphamide and melphalan on human bone marrow MSCs were evaluated in vitro. Within this study, the exposure of MSCs to the chemotherapeutic agents cyclophosphamide or melphalan had strong negative effects on MSC expansion and CD44 expression. In addition, changes were seen in the ability of MSCs to support hematopoietic cell migration and repopulation. These observations therefore highlight potential disadvantages in the use of autologous MSCs in chemotherapeutically pre-treated patients for future therapeutic strategies. Furthermore, this study suggests that if the damage caused by chemotherapeutic agents to marrow MSCs is substantial, it would be logical to use cultured allogeneic MSCs therapeutically to assist or repair the marrow microenvironment after HDC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Article  CAS  Google Scholar 

  2. Rafii S, Mohle R, Shapiro F, Frey BM, Moore MA (1997) Regulation of hematopoiesis by microvascular endothelium. Leuk Lymphoma 27(5–6):375–386

    PubMed  CAS  Google Scholar 

  3. Majumdar MK, Thiede MA, Haynesworth SE, Bruder SP, Gerson SL (2000) Human marrow-derived mesenchymal stem cells (MSCs) express hematopoietic cytokines and support long-term hematopoiesis when differentiated toward stromal and osteogenic lineages. J Hematother Stem Cell Res 9(6):841–848

    Article  PubMed  CAS  Google Scholar 

  4. Majumdar MK, Thiede MA, Mosca JD, Moorman M, Gerson SL (1998) Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol 176(1):57–66

    Article  PubMed  CAS  Google Scholar 

  5. Ishida T, Inaba M, Hisha H, Sugiura K, Adachi Y, Nagata N, Ogawa R, Good RA, Ikehara S (1994) Requirement of donor-derived stromal cells in the bone marrow for successful allogeneic bone marrow transplantation. Complete prevention of recurrence of autoimmune diseases in MRL/MP-Ipr/Ipr mice by transplantation of bone marrow plus bones (stromal cells) from the same donor. J Immunol 152(6):3119–3127

    PubMed  CAS  Google Scholar 

  6. Domenech J, Roingeard F, Herault O, Truglio D, Desbois I, Colombat P, Binet C (1998) Changes in the functional capacity of marrow stromal cells after autologous bone marrow transplantation. Leuk Lymphoma 29(5–6):533–546

    Article  PubMed  CAS  Google Scholar 

  7. Galotto M, Berisso G, Delfino L, Podesta M, Ottaggio L, Dallorso S, Dufour C, Ferrara GB, Abbondandolo A, Dini G, Bacigalupo A, Cancedda R, Quarto R (1999) Stromal damage as consequence of high-dose chemo/radiotherapy in bone marrow transplant recipients. Exp Hematol 27(9):1460–1466

    Article  PubMed  CAS  Google Scholar 

  8. O’Flaherty E, Sparrow R, Szer J (1995) Bone marrow stromal function from patients after bone marrow transplantation. Bone Marrow Transplant 15(2):207–212

    PubMed  Google Scholar 

  9. Carlo-Stella C, Tabilio A, Regazzi E, Garau D, La Tagliata R, Trasarti S, Andrizzi C, Vignetti M, Meloni G (1997) Effect of chemotherapy for acute myelogenous leukemia on hematopoietic and fibroblast marrow progenitors. Bone Marrow Transplant 20(6):465–471

    Article  PubMed  CAS  Google Scholar 

  10. Corazza F, Hermans C, Ferster A, Fondu P, Demulder A, Sariban E (2004) Bone marrow stroma damage induced by chemotherapy for acute lymphoblastic leukemia in children. Pediatr Res 55(1):152–158

    Article  PubMed  Google Scholar 

  11. Banfi A, Podesta M, Fazzuoli L, Sertoli MR, Venturini M, Santini G, Cancedda R, Quarto R (2001) High-dose chemotherapy shows a dose-dependent toxicity to bone marrow osteoprogenitors: a mechanism for post-bone marrow transplantation osteopenia. Cancer 92(9):2419–2428

    Article  PubMed  CAS  Google Scholar 

  12. Cohen GI, Greenberger JS, Canellos GP (1982) Effect of chemotherapy and irradiation on interactions between stromal and hemopoietic cells in vitro. Scan Electron Microsc Pt 1:359–365

    PubMed  Google Scholar 

  13. Domaratskaia EI, Bueverova EI, Paiushina OD, Starostin VI (2005) Alkylating damage by dipin of hematopoietic and stromal cells of the bone marrow. Izv Akad Nauk Ser Biol 3:267–272

    PubMed  Google Scholar 

  14. Domenech J, Gihana E, Dayan A, Truglio D, Linassier C, Desbois I, Lamagnere JP, Colombat P, Binet C (1994) Haemopoiesis of transplanted patients with autologous marrows assessed by long-term marrow culture. Br J Haematol 88(3):488–496

    Article  PubMed  CAS  Google Scholar 

  15. Fried W, Chamberlin W, Kedo A, Barone J (1976) Effects of radiation on hematopoietic stroma. Exp Hematol 4(5):310–314

    PubMed  CAS  Google Scholar 

  16. Kemp K, Morse R, Wexler S, Cox C, Mallam E, Hows J, Donaldson C (2010) Chemotherapy-induced mesenchymal stem cell damage in patients with hematological malignancy. Ann Hematol 89(7):701–713

    Article  PubMed  CAS  Google Scholar 

  17. Simmons PJ, Przepiorka D, Thomas ED, Torok-Storb B (1987) Host origin of marrow stromal cells following allogeneic bone marrow transplantation. Nature 328(6129):429–432

    Article  PubMed  CAS  Google Scholar 

  18. Cilloni D, Carlo-Stella C, Falzetti F, Sammarelli G, Regazzi E, Colla S, Rizzoli V, Aversa F, Martelli MF, Tabilio A (2000) Limited engraftment capacity of bone marrow-derived mesenchymal cells following T-cell-depleted hematopoietic stem cell transplantation. Blood 96(10):3637–3643

    PubMed  CAS  Google Scholar 

  19. Koc ON, Peters C, Aubourg P, Raghavan S, Dyhouse S, DeGasperi R, Kolodny EH, Yoseph YB, Gerson SL, Lazarus HM, Caplan AI, Watkins PA, Krivit W (1999) Bone marrow-derived mesenchymal stem cells remain host-derived despite successful hematopoietic engraftment after allogeneic transplantation in patients with lysosomal and peroxisomal storage diseases. Exp Hematol 27(11):1675–1681

    Article  PubMed  CAS  Google Scholar 

  20. Fibbe WE, Noort WA, Schipper F, Willemze R (2001) Ex vivo expansion and engraftment potential of cord blood-derived CD34+ cells in NOD/SCID mice. Ann NY Acad Sci 938:9–17

    Article  PubMed  CAS  Google Scholar 

  21. Almeida-Porada G, Flake AW, Glimp HA, Zanjani ED (1999) Cotransplantation of stroma results in enhancement of engraftment and early expression of donor hematopoietic stem cells in utero. Exp Hematol 27(10):1569–1575

    Article  PubMed  CAS  Google Scholar 

  22. Angelopoulou M, Novelli E, Grove JE, Rinder HM, Civin C, Cheng L, Krause DS (2003) Cotransplantation of human mesenchymal stem cells enhances human myelopoiesis and megakaryocytopoiesis in NOD/SCID mice. Exp Hematol 31(5):413–420

    Article  PubMed  CAS  Google Scholar 

  23. in’t Anker PS, Noort WA, Kruisselbrink AB, Scherjon SA, Beekhuizen W, Willemze R, Kanhai HH, Fibbe WE (2003) Nonexpanded primary lung and bone marrow-derived mesenchymal cells promote the engraftment of umbilical cord blood-derived CD34(+) cells in NOD/SCID mice. Exp Hematol 31(10):881–889

    Article  Google Scholar 

  24. Koc ON, Gerson SL, Cooper BW, Dyhouse SM, Haynesworth SE, Caplan AI, Lazarus HM (2000) Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol 18(2):307–316

    PubMed  CAS  Google Scholar 

  25. Wexler SA, Donaldson C, Denning-Kendall P, Rice C, Bradley B, Hows JM (2003) Adult bone marrow is a rich source of human mesenchymal ‘stem’ cells but umbilical cord and mobilized adult blood are not. Br J Haematol 121(2):368–374

    Article  PubMed  Google Scholar 

  26. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    Article  PubMed  CAS  Google Scholar 

  27. Chen TL, Passos-Coelho JL, Noe DA, Kennedy MJ, Black KC, Colvin OM, Grochow LB (1995) Nonlinear pharmacokinetics of cyclophosphamide in patients with metastatic breast cancer receiving high-dose chemotherapy followed by autologous bone marrow transplantation. Cancer Res 55(4):810–816

    PubMed  CAS  Google Scholar 

  28. Li J, Law HK, Lau YL, Chan GC (2004) Differential damage and recovery of human mesenchymal stem cells after exposure to chemotherapeutic agents. Br J Haematol 127(3):326–334

    Article  PubMed  CAS  Google Scholar 

  29. Lazarus HM, Herzig RH, Graham-Pole J, Wolff SN, Phillips GL, Strandjord S, Hurd D, Forman W, Gordon EM, Coccia P et al (1983) Intensive melphalan chemotherapy and cryopreserved autologous bone marrow transplantation for the treatment of refractory cancer. J Clin Oncol 1(6):359–367

    PubMed  CAS  Google Scholar 

  30. Pinguet F, Martel P, Fabbro M, Petit I, Canal P, Culine S, Astre C, Bressolle F (1997) Pharmacokinetics of high-dose intravenous melphalan in patients undergoing peripheral blood hematopoietic progenitor-cell transplantation. Anticancer Res 17(1B):605–611

    PubMed  CAS  Google Scholar 

  31. Alberts DS, Chang SY, Chen HS, Larcom BJ, Evans TL (1980) Comparative pharmacokinetics of chlorambucil and melphalan in man. Recent Results Cancer Res 74:124–131

    PubMed  CAS  Google Scholar 

  32. Rooney PH, Telfer C, McFadyen MC, Melvin WT, Murray GI (2004) The role of cytochrome P450 in cytotoxic bioactivation: future therapeutic directions. Curr Cancer Drug Targets 4(3):257–265

    Article  PubMed  CAS  Google Scholar 

  33. Nieto Y, Vaughan WP (2004) Pharmacokinetics of high-dose chemotherapy. Bone Marrow Transplant 33(3):259–269

    Article  PubMed  CAS  Google Scholar 

  34. Hows JM, Bradley BA, Marsh JC, Luft T, Coutinho L, Testa NG, Dexter TM (1992) Growth of human umbilical-cord blood in longterm haemopoietic cultures. Lancet 340(8811):73–76

    Article  PubMed  CAS  Google Scholar 

  35. Cichy J, Pure E (2003) The liberation of CD44. J Cell Biol 161(5):839–843

    Article  PubMed  CAS  Google Scholar 

  36. Ghaffari S, Smadja-Joffe F, Oostendorp R, Levesque JP, Dougherty G, Eaves A, Eaves C (1999) CD44 isoforms in normal and leukemic hematopoiesis. Exp Hematol 27(6):978–993

    Article  PubMed  CAS  Google Scholar 

  37. Liu J, Jiang G (2006) CD44 and hematologic malignancies. Cell Mol Immunol 3(5):359–365

    PubMed  CAS  Google Scholar 

  38. Ponta H, Wainwright D, Herrlich P (1998) The CD44 protein family. Int J Biochem Cell Biol 30(3):299–305

    Article  PubMed  CAS  Google Scholar 

  39. Sneath RJ, Mangham DC (1998) The normal structure and function of CD44 and its role in neoplasia. Mol Pathol 51(4):191–200

    Article  PubMed  CAS  Google Scholar 

  40. Zheng H, Wang X, Legerski RJ, Glazer PM, Li L (2006) Repair of DNA interstrand cross-links: interactions between homology-dependent and homology-independent pathways. DNA Repair (Amst) 5(5):566–574

    Article  CAS  Google Scholar 

  41. Huitema AD, Smits KD, Mathot RA, Schellens JH, Rodenhuis S, Beijnen JH (2000) The clinical pharmacology of alkylating agents in high-dose chemotherapy. Anticancer Drugs 11(7):515–533

    Article  PubMed  CAS  Google Scholar 

  42. Davies JH, Evans BA, Jenney ME, Gregory JW (2002) In vitro effects of chemotherapeutic agents on human osteoblast-like cells. Calcif Tissue Int 70(5):408–415

    Article  PubMed  CAS  Google Scholar 

  43. Zhao Z, Tang X, You Y, Li W, Liu F, Zou P (2006) Assessment of bone marrow mesenchymal stem cell biological characteristics and support hemotopoiesis function in patients with chronic myeloid leukemia. Leuk Res 30(8):993–1003

    Article  PubMed  CAS  Google Scholar 

  44. Hochhauser D (1997) Modulation of chemosensitivity through altered expression of cell cycle regulatory genes in cancer. Anticancer Drugs 8(10):903–910

    Article  PubMed  CAS  Google Scholar 

  45. Khaldoyanidi S, Sikora L, Orlovskaya I, Matrosova V, Kozlov V, Sriramarao P (2001) Correlation between nicotine-induced inhibition of hematopoiesis and decreased CD44 expression on bone marrow stromal cells. Blood 98(2):303–312

    Article  PubMed  CAS  Google Scholar 

  46. Moll J, Khaldoyanidi S, Sleeman JP, Achtnich M, Preuss I, Ponta H, Herrlich P (1998) Two different functions for CD44 proteins in human myelopoiesis. J Clin Invest 102(5):1024–1034

    Article  PubMed  CAS  Google Scholar 

  47. Reese JS, Koc ON, Gerson SL (1999) Human mesenchymal stem cells provide stromal support for efficient CD34+ transduction. J Hematother Stem Cell Res 8(5):515–523

    Article  PubMed  CAS  Google Scholar 

  48. Szumilas P, Barcew K, Baskiewicz-Masiuk M, Wiszniewska B, Ratajczak MZ, Machalinski B (2005) Effect of stem cell mobilization with cyclophosphamide plus granulocyte colony-stimulating factor on morphology of haematopoietic organs in mice. Cell Prolif 38(1):47–61

    Article  PubMed  CAS  Google Scholar 

  49. Cottler-Fox MH, Lapidot T, Petit I, Kollet O, DiPersio JF, Link D, and Devine S (2003) Stem cell mobilization. Hematology Am Soc Hematol Educ Program, pp 419–437.

  50. Lapidot T, Dar A, Kollet O (2005) How do stem cells find their way home? Blood 106(6):1901–1910

    Article  PubMed  CAS  Google Scholar 

  51. Ponomaryov T, Peled A, Petit I, Taichman RS, Habler L, Sandbank J, Arenzana-Seisdedos F, Magerus A, Caruz A, Fujii N, Nagler A, Lahav M, Szyper-Kravitz M, Zipori D, Lapidot T (2000) Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. J Clin Invest 106(11):1331–1339

    Article  PubMed  CAS  Google Scholar 

  52. Zhao Y, Zhan Y, Burke KA, Anderson WF (2005) Soluble factor(s) from bone marrow cells can rescue lethally irradiated mice by protecting endogenous hematopoietic stem cells. Exp Hematol 33(4):428–434

    Article  PubMed  CAS  Google Scholar 

  53. Lapidot T, Petit I (2002) Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol 30(9):973–981

    Article  PubMed  CAS  Google Scholar 

  54. Collis SJ, Neutzel S, Thompson TL, Swartz MJ, Dillehay LE, Collector MI, Sharkis SJ, DeWeese TL (2004) Hematopoietic progenitor stem cell homing in mice lethally irradiated with ionizing radiation at differing dose rates. Radiat Res 162(1):48–55

    Article  PubMed  CAS  Google Scholar 

  55. Hendrikx PJ, Martens CM, Hagenbeek A, Keij JF, Visser JW (1996) Homing of fluorescently labeled murine hematopoietic stem cells. Exp Hematol 24(2):129–140

    PubMed  CAS  Google Scholar 

  56. Bacigalupo A (2004) Mesenchymal stem cells and haematopoietic stem cell transplantation. Best Pract Res Clin Haematol 17(3):387–399

    PubMed  CAS  Google Scholar 

  57. Dexter TM, Allen TD, Lajtha LG (1977) Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol 91(3):335–344

    Article  PubMed  CAS  Google Scholar 

  58. de Wynter E, Ploemacher RE (2001) Assays for the assessment of human hematopoietic stem cells. J Biol Regul Homeost Agents 15(1):23–27

    PubMed  Google Scholar 

  59. Riley RS, Idowu M, Chesney A, Zhao S, McCarty J, Lamb LS, Ben-Ezra JM (2005) Hematologic aspects of myeloablative therapy and bone marrow transplantation. J Clin Lab Anal 19(2):47–79

    Article  PubMed  Google Scholar 

  60. Javazon EH, Beggs KJ, Flake AW (2004) Mesenchymal stem cells: paradoxes of passaging. Exp Hematol 32(5):414–425

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We wish to express our gratitude to the doctors and nurses at the Southmead Hospital, Bristol, for bone marrow collections and to all patients who donated marrow samples. We would also like to thank the midwives at the Central Delivery Suite, Southmead Hospital, Bristol, for cord blood collections and the mothers who donated cord blood. This work was supported by a Ph.D. bursary from the University of the West of England, and also in part, by the funding provided by the Transplant Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Kemp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kemp, K., Morse, R., Sanders, K. et al. Alkylating chemotherapeutic agents cyclophosphamide and melphalan cause functional injury to human bone marrow-derived mesenchymal stem cells. Ann Hematol 90, 777–789 (2011). https://doi.org/10.1007/s00277-010-1141-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-010-1141-8

Keywords

Navigation