Skip to main content
Log in

The metalloprotease, NN-PF3 from Naja naja venom inhibits platelet aggregation primarily by affecting α2β1 integrin

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

NN-PF3 is a non-toxic, anticoagulant, high-molecular-mass (67.81 kDa) metalloprotease from Indian cobra (Naja naja) venom. In the present study, NN-PF3 was investigated for the mechanism of inhibition of collagen-induced aggregation of human platelets. The complete inhibition of collagen-induced aggregation and partial inhibition of ADP- and epinephrine-induced aggregation has the respective IC50 of 75 ± 5, 185 ± 10, and 232 ± 12 nM, whereas no inhibition of thrombin-, arachidonic acid-, and ristocetin-induced aggregation of platelets was observed in platelet-rich plasma. Further, native NN-PF3 and EDTA-inactivated NN-PF3 inhibited collagen-induced aggregation of washed platelets with respective IC50 of 75 ± 4 and 180 ± 6 nM. The higher inhibitory effect of native NN-PF3 compared with EDTA-inactivated NN-PF3 suggests the enzymatic and non-enzymatic mechanism of inhibition. NN-PF3 pretreatment affected the collagen binding but not the fibrinogen, and fibronectin binding of washed platelets in adhesion assay suggested that the collagen receptors are affected. Western blot study using anti-integrin α2β1 mAb 6F1 suggested that NN-PF3 binds to integrin α2β1 in a primary structure-dependent manner only and is not cleaved. There was a drastic reduction in the intensity of several intracellular signaling phosphotyrosine protein bands when monoclonal anti-phosphotyrosine antibody was used, suggesting that the major activation pathway of platelets get affected, which occurs through glycoprotein VI. NN-PF3 did not bind to collagen as revealed by Western blot using anti-collagen mAb. Furthermore, neither the proteolytic cleavage of fibrinogen nor its degradation products by NN-PF3 contributed for the collagen-induced platelet aggregation inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Savage B, Cattaneo M, Ruggeri ZM (2001) Mechanisms of platelet aggregation. Curr Opin Hematol 8:270–276

    Article  PubMed  CAS  Google Scholar 

  2. Calvo E, Tokumasu F, Marinotti O, Villeval JL, Ribeiro JM, Francischetti IM (2007) Aegyptin, a novel mosquito salivary gland protein, specifically binds to collagen and prevents its interaction with platelet glycoprotein VI, integrin alpha2 beta1, and von Willebrand factor. J Biol Chem 282:26928–26938

    Article  PubMed  CAS  Google Scholar 

  3. Watson SP (1999) Collagen receptor signaling in platelets and megakaryocytes. Thromb Haemost 82:365–376

    PubMed  CAS  Google Scholar 

  4. Kroll MH, Hellums JD, McIntire LV, Schafer AI, Moake JL (1996) Platelets and shear stress. Blood 88:1525–1541

    PubMed  CAS  Google Scholar 

  5. Watson SP, Gibbins J (1998) Collagen receptor signalling in platelets: extending the role of the ITAM. Immunol Today 19:260–264

    Article  PubMed  CAS  Google Scholar 

  6. Andrews RK, Berndt MC (2000) Snake venom modulators of platelet adhesion receptors and their ligands. Toxicon 38:775–791

    Article  PubMed  CAS  Google Scholar 

  7. Clemetson KJ, Lu Q, Clemetson JM (2007) Snake venom proteins affecting platelets and their applications to anti-thrombotic research. Curr Pharm Des 13:2887–2892

    Article  PubMed  CAS  Google Scholar 

  8. Huang TF (1998) What have snakes taught us about integrins? Cell Mol Life Sci 54:527–540

    Article  PubMed  CAS  Google Scholar 

  9. Fox JW, Serrano SM (2005) Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases. Toxicon 45:969–985

    Article  PubMed  CAS  Google Scholar 

  10. Kamiguti AS (2005) Platelets as targets of snake venom metalloproteinases. Toxicon 45:1041–1049

    Article  PubMed  CAS  Google Scholar 

  11. Wang WJ, Shih CH, Huang TF (2005) Primary structure and antiplatelet mechanism of a snake venom metalloproteinase, acurhagin, from Agkistrodon acutus venom. Biochimie 87:1065–1077

    Article  PubMed  CAS  Google Scholar 

  12. Wang WJ (2007) Purification and functional characterization of AAV1, a novel P-III metalloproteinase, from Formosan agkistrodon acutus venom. Biochimie 89:105–115

    Article  PubMed  CAS  Google Scholar 

  13. Jagadeesha DK, Shashidhara murthy R, Girish KS, Kemparaju K (2002) A non-toxic anticoagulant metalloprotease: purification and characterization from Indian cobra (Naja naja naja) venom. Toxicon 40:667–675

    Article  PubMed  CAS  Google Scholar 

  14. Kumar MS, Devaraj VR, Vishwanath BS, Kemparaju K (2010) Anti-coagulant activity of a metalloprotease: further characterization from the Indian cobra (Naja naja) venom. J Thromb Thrombolysis 29:340–348

    Article  PubMed  CAS  Google Scholar 

  15. Cazenave JP, Ohlmann P, Cassel D, Eckly A, Hechler B, Gachet C (2004) Preparation of washed platelet suspensions from human and rodent blood. Methods Mol Biol 272:13–28

    PubMed  CAS  Google Scholar 

  16. Born GV, Cross MJ (1963) Effect of adenosine diphosphate on the concentration of platelets in circulating blood. Nature 197:974–976

    Article  PubMed  CAS  Google Scholar 

  17. Bellavite P, Andrioli G, Guzzo P, Arigliano P, Chirumbolo S, Manzato F, Santonastaso C (1994) A colorimetric method for the measurement of platelet adhesion in microtiter plates. Anal Biochem 216:444–450

    Article  PubMed  CAS  Google Scholar 

  18. Da Silva M, Lucena S, Aguilar I, Rodríguez-Acosta A, Salazar AM, Sánchez EE, Girón ME, Carvajal Z, Arocha-Piñango CL, Guerrero B (2009) Anti-platelet effect of cumanastatin 1, a disintegrin isolated from venom of South American Crotalus rattle snake. Thromb Res 123:731–739

    Article  PubMed  Google Scholar 

  19. Loría GD, Rucavado A, Kamiguti AS, Theakston RD, Fox JW, Alape A, Gutiérrez JM (2003) Characterization of ‘basparin A’, a prothrombin-activating metalloproteinase, from the venom of the snake Bothrops asper that inhibits platelet aggregation and induces defibrination and thrombosis. Arch Biochem Biophys 418:13–24

    Article  PubMed  Google Scholar 

  20. Kamiguti AS, Hay CR, Zuzel M (1996) Inhibition of collagen-induced platelet aggregation as the result of cleavage of alpha 2 beta 1-integrin by the snake venom metalloproteinase jararhagin. Biochem J 320:635–641

    PubMed  CAS  Google Scholar 

  21. Estêvão-Costa MI, Diniz CR, Magalhães A, Markland FS, Sanchez EF (2000) Action of metalloproteinases mutalysin I and II on several components of the hemostatic and fibrinolytic systems. Thromb Res 99:363–376

    Article  PubMed  Google Scholar 

  22. Phillips DR, Charo IF, Scarborough RM (1991) GPIIb–IIIa: the responsive integrin. Cell 65:359–362

    Article  PubMed  CAS  Google Scholar 

  23. Perutelli P, Mori PG (1992) The human platelet membrane glycoprotein IIb/IIIa complex: a multi functional adhesion receptor. Haematologica 77:162–168

    PubMed  CAS  Google Scholar 

  24. McLane MA, Sanchez EE, Wong A, Paquette-Straub C, Perez JC (2004) Disintegrins. Curr Drug Targets Cardiovasc Haematol Disord 4:327–355

    Article  PubMed  CAS  Google Scholar 

  25. Niewiarowski S, McLane MA, Kloczewiak M, Stewart GJ (1994) Disintegrins and other naturally occurring antagonists of platelet fibrinogen receptors. Semin Hematol 31:289–300

    PubMed  CAS  Google Scholar 

  26. Dennis MS, Henzel WJ, Pitti RM, Lipari MT, Napier MA, Deisher TA, Bunting S, Lazarus RA (1989) Platelet glycoprotein IIb–IIIa protein antagonists from snake venoms: evidence for a family of platelet-aggregation inhibitors. Proc Natl Acad Sci USA 87:2471–2475

    Article  Google Scholar 

  27. Gould RJ, Polokoff MA, Friedman PA, Huang TF, Holt JC, Cook JJ, Niewiarowski S (1990) Disintegrins: a family of integrin inhibitory proteins from viper venoms. Proc Soc Exp Biol Med 195:168–171

    PubMed  CAS  Google Scholar 

  28. Navdaev A, Clemetson JM, Polgar J, Kehrel BE, Glauner M, Magnenat E, Wells TN, Clemetson KJ (2001) Aggretin, a heterodimeric C-type lectin from Calloselasma rhodostoma (Malayan pit viper), stimulates platelets by binding to alpha 2beta 1 integrin and glycoprotein Ib, activating Syk and phospholipase C gamma 2, but does not involve the glycoprotein VI/Fc receptor gamma chain collagen receptor. J Biol Chem 276:20882–20889

    Article  PubMed  CAS  Google Scholar 

  29. Hsu CC, Wu WB, Huang TF (2008) A snake venom metalloproteinase, kistomin, cleaves platelet glycoprotein VI and impairs platelet functions. J Thromb Haemost 6:1578–1585

    PubMed  CAS  Google Scholar 

  30. Andrews RK, Kamiguti AS, Berlanga O, Leduc M, Theakston RD, Watson SP (2001) The use of snake venom toxins as tools to study platelet receptors for collagen and von Willebrand factor. Haemostasis 31:155–172

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank the Department of Science and Technology, New Delhi, India (SR/SO/BB-56/2004 dated 01-06-2006) for financial assistance. We also thank Prof. Barry S. Coller, Professor and Physician-in-Chief, Rockefeller University, New York, USA for generously providing anti-integrin α2β1 mAb 6F1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kemparaju.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, M.S., Girish, K.S., Vishwanath, B.S. et al. The metalloprotease, NN-PF3 from Naja naja venom inhibits platelet aggregation primarily by affecting α2β1 integrin. Ann Hematol 90, 569–577 (2011). https://doi.org/10.1007/s00277-010-1103-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-010-1103-1

Keywords

Navigation