Skip to main content

Advertisement

Log in

CXCR4 expression on transplanted peripheral blood CD34+ cells: relationship to engraftment after autologous transplantation in a cohort of multiple myeloma patients

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Expression of the chemokine receptor CXCR4 by haematopoietic stem cells (HSCs) is believed to influence the process of these cells ‘homing’ back to the bone marrow post-transplantation, in response to the stromal cell-derived factor-1 gradient, followed by engraftment. The primary aim of this retrospective study was to compare reinfused CD34+ cell dose, assessed from the fresh collection, with the post-thaw viable (v) CD34+ and vCD34/CXCR4+ dual positive cell dose as predictors of haematopoietic recovery in multiple myeloma patients undergoing autologous stem cell transplantation. Cryopreserved samples from stem cell collections of 27 myeloma patients were analysed for CD34 and CXCR4 expression and times to haematological engraftment measured. Dosage of transplanted vCD34+ cells was on average 79% of the original calculation from the fresh collection bag (range 29–98%). The median percentage of vCD34+ cells co-expressing CXCR4 was 37% (3.7–97%). Surface expression of CXCR4 by thawed vCD34+ cells was closely correlated to complementary DNA levels. The median dose of CD34/CXCR4+ cells in the autografts was 1.2 × 106/kg (0.2–3.0 × 106/kg) compared with 3.3 × 106/kg for transplanted vCD34+ cells (1.2–5.5 × 106/kg). Both CD34 and vCD34 doses correlated with neutrophil engraftment (p < 0.005) although vCD34/CXCR4+ dose did not. However, patients given a higher dose of CD34/CXCR4+ cells (≥1.75 × 106/kg) showed a faster time to platelet recovery (p < 0.05) than those given a lower dose (≤0.42 × 106/kg). These results warrant further study of CD34/CXCR4 expression by mobilised HSCs and the relationship to platelet recovery post-transplantation on a larger cohort of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Olivieri A, Offidani M, Montanari M et al (1998) Factors affecting haemopoietic recovery after high-dose therapy and autologous peripheral blood progenitor cell transplantation: a single centre experience. Haematologica 83:329–337

    PubMed  CAS  Google Scholar 

  2. Hass R, Mohle R, Fruhauf S et al (1994) Patient characteristics associated with successful mobilizing and autografting of peripheral blood progenitor cells in malignant lymphoma. Blood 83:3787–3794

    Google Scholar 

  3. Feugier P, Bensoussan D, Girard F et al (2003) Haematological recovery after autologous PBPC transplantation: importance of the number of post-thaw CD34+ cells. Transfusion 43:878–884

    Article  PubMed  Google Scholar 

  4. To LB, Haylock DN, Simmons PJ, Juttner CA (1997) The biology and clinical uses of blood stem cells. Blood 89:2233–2258

    PubMed  CAS  Google Scholar 

  5. Bender JG, To LB, Williams S, Schwartzberg LS (1992) Defining a therapeutic dose of peripheral blood stem cells. J Hematother 1:329–341

    Article  PubMed  CAS  Google Scholar 

  6. Wysoczynski M, Reca R, Ratajczak J et al (2005) Incorporation of CXCR4 into membrane lipid rafts primes homing-related responses of hematopoietic stem/progenitor cells to an SDF-1 gradient. Blood 105:40–48

    Article  PubMed  CAS  Google Scholar 

  7. Burger JA, Kipps TJ (2006) CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood 107:1761–1767

    Article  PubMed  CAS  Google Scholar 

  8. Voermans C, Kooi MLK, Rodenhuis S, van der Lelie H, van der Schoot CE, Gerritsen WR (2001) In vitro migratory capacity of CD34+ cells is related to haematopoietic recovery after autologous stem cell transplantation. Blood 97:799–884

    Article  PubMed  CAS  Google Scholar 

  9. Aiuti A, Webb IJ, Bleul C, Springer T, Gutierrez-Ramos JC (1997) The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J Exp Med 185:111–120

    Article  PubMed  CAS  Google Scholar 

  10. Peled A, Petit I, Kollet O, Ponomaryov R, Zipori D, Lapidot T (1999) Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283:845–848

    Article  PubMed  CAS  Google Scholar 

  11. Herrer C, Sanchez J, Torres A, Pascual A, Rueda A, Alvarez MA (2004) Pattern of expression of CXCR4 and adhesion molecules by human CD34+ cells from different sources: role in homing efficiency in NOD/SCID mice. Haematologica 89:1037–1045

    Google Scholar 

  12. Rosu-Myles M, Gallacher L, Murdoch B et al (2000) The human hematopoietic stem cell compartment is heterogeneous for CXCR4 expression. Proc Nat Acad Sci USA 97:14626–14631

    Article  PubMed  CAS  Google Scholar 

  13. Bonig H, Priestly GV, Oehler V, Papayannopoulou T (2007) Hematopoietic progenitor cells (HPC) from mobilized peripheral blood display enhanced migration and marrow homing compared to steady-state bone marrow HPC. Exp Hematol 35:326–34

    Article  PubMed  CAS  Google Scholar 

  14. Spencer A, Jackson J, Baulch-Brown C (2001) Enumeration of bone marrow ‘homing’ haemopoietic stem cells from G-CSF-mobilised normal donors and influence on engraftment following allogeneic transplantation. Bone Marrow Transpl 28:1019–1022

    Article  CAS  Google Scholar 

  15. Trickett AE, Smith S, Kwan YL (2001) Accurate calculation of blood volume to be processed by aphaeresis to achieve target CD34+ cell numbers of PBPC transplantation. Cytotherapy 3:5–10

    Article  PubMed  CAS  Google Scholar 

  16. Keeney M, Chin-Yee I, Weir K, Popma J, Nayar R, Sutherland DR (1998) Single platform flow cytometric absolute CD34+ cell counts based on the ISHAGE guidelines. International Society of Hematotherapy and Graft Engineering. Cytometry 34:61–70

    Article  PubMed  CAS  Google Scholar 

  17. Shpall EJ, Champlin R, Glaspy JA (1988) Effect of CD34+ peripheral blood progenitor cell dose on hematopoietic recovery. Biol Blood Marrow Transplant 4:84–92

    Article  Google Scholar 

  18. Tricot G, Jagannath S, Vesole D et al (1995) Peripheral blood stem cell transplants for multiple myeloma: identification of favourable variables for rapid engraftments in 225 patients. Blood 85:588–597

    PubMed  CAS  Google Scholar 

  19. Beanjean F, Bourhis JH, Bayle CH et al (1998) Successful cryopreservation of purified autologous CD34+ cells: influence of freezing parameters on cell recovery and engraftment. Bone Marrow Transpl 22:1091–1096

    Article  Google Scholar 

  20. Reich-Slotky R, Colovai AI, Semidei-Pomales M et al (2008) Determining post-thaw CD34+ cell dose of cryopreserved haematopoietic progenitor cells demonstrates high recovery and confirms their integrity. Vox Sanguinis 94:351–357

    Article  PubMed  CAS  Google Scholar 

  21. Yang H, Acker JP, Cabuhat M, Letcher B, Larratt L, McGann LE (2005) Association of post-thaw viable CD34+ cells and CFU-GM with time to hematopoietic engraftment. Bone Marrow Transpl 35:881–887

    Article  CAS  Google Scholar 

  22. Oliveira AM, Durvanei AM, Metzger M et al (2009) Thalidomide treatment down-regulates SDF-1α and CXCR4 expression in multiple myeloma patients. Leuk Res 33:970–973

    Article  PubMed  CAS  Google Scholar 

  23. Gazitt Y, Akay C (2004) Mobilisation of myeloma cells involves SDF-1/CXCR4 signalling and downregulation of VLA-4. Stem Cells 22:65–73

    Article  PubMed  CAS  Google Scholar 

  24. Cecyn KZ, Schimieguel DM, Kimura EYS, Yamamoto M, de Oliveira JSR (2009) Plasma levels of FL and SDF-1 and expression of FLT-3 and CXCR4 on CD34+ cells assessed pre and post hematopoietic stem cell mobilisation in patients with hematologic malignancies and in healthy donors. Trans Apher Sci 40:159–167

    Article  Google Scholar 

  25. Rusten L, Cue L, Pharo A et al (2000) TNF-a and TGF-b potentially upregulate the expression of CXCR4 on peripheral blood progenitor cells (abstract). Blood 94:252a

    Google Scholar 

  26. Kollet O, Spiegel A, Peled A et al (2001) Rapid and efficient homing of human CD34+CD38/low CXCR4+ stem and progenitor cells to the bone marrow and spleen of NOD/SCID and NOD/SCIDB2mnull mice. Blood 97:3283–3291

    Article  PubMed  CAS  Google Scholar 

  27. Marquez-Curtis L, Turner AR, Larratt LM, Letcher B, Lee SF, Janowska-Wieczorek A (2009) CD34+ cell responsiveness to stromal cell-derived factor 1α underlies rate of engraftment after peripheral blood stem cell transplantation. Transfusion 49:161–169

    Article  PubMed  Google Scholar 

  28. Ohno N, Kajiume T, Sera Y, Sato T, Kobayashi M (2009) Short-term culture of umbilical cord blood-derived CD34 cells enhances engraftment into NOD/SCID mice through increased CXCR4 expression. Stem Cells Dev 18:1221–1226

    Article  PubMed  CAS  Google Scholar 

  29. Kahn J, Byk T, Jansson-Sjostrand L et al (2004) Overexpression of CXCR4 on human CD34+ progenitors increases their proliferation, migration and NOD/SCID repopulation. Blood 103:2942–2949

    Article  PubMed  CAS  Google Scholar 

  30. Weaver CH, Hazelton B, Birch R et al (1995) An analysis of engraftment kinetics as a function of the CD34 content of peripheral blood progenitor collections in 692 patients after the administration of myeloablative chemotherapy. Blood 86:3961–3969

    PubMed  CAS  Google Scholar 

  31. Ghobrial IM, Dispenzieri A, Bundy KL et al (2003) Effect of thalidomide on stem cell collection and engraftment in patients with multiple myeloma. Bone Marrow Tranplant 32:587–592

    Article  CAS  Google Scholar 

  32. Pecora AL, Preti RA, Gleim GW et al (1998) CD34+CD33 cells influence days to engraftment and transfusion requirements in autologous blood-stem cell recipients. J Clin Oncol 16:2093–2104

    PubMed  CAS  Google Scholar 

  33. Watanabe T, Dave B, Heiman DG, Jackson JD, Kessinger A, Talmadge JE (1998) Cell adhesion molecule expression on CD34+ cells in grafts and time to myeloid and platelet recovery after autologous stem cell transplantation. Exp Hematol 26:10–18

    PubMed  CAS  Google Scholar 

  34. Lang P, Bader P, Schumm M et al (2004) Transplantation of a combination of CD133+ and CD34+ selected progenitor cells from alternative donors. Br J Haematol 124:72–79

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

The authors thank Susan Smith for technical assistance with the flow cytometry gating and analysis.

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Hicks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hicks, C., Isaacs, A., Wong, R. et al. CXCR4 expression on transplanted peripheral blood CD34+ cells: relationship to engraftment after autologous transplantation in a cohort of multiple myeloma patients. Ann Hematol 90, 547–555 (2011). https://doi.org/10.1007/s00277-010-1097-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-010-1097-8

Keywords

Navigation