Skip to main content

Advertisement

Log in

Cathepsins B and L in peripheral blood mononuclear cells of pediatric acute myeloid leukemia: potential poor prognostic markers

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

The diagnostic and prognostic significance of cathepsin B (CTSB) and L (CTSL) is well documented for solid tumors. However, their significance in acute leukemias is lacking. This study was planned to investigate expression and significance of these proteases in peripheral blood mononuclear cells (PBMCs) of patients with pediatric acute myeloid leukemia (AML). CTSL and CTSB activities were assayed in PBMCs of 24 children with AML and ten healthy controls by spectrofluorimetry. The mRNA levels of these proteases and their specific endogenous inhibitor cystatin C and transcriptional upregulator vascular endothelial growth factor (VEGF) were quantitated by real-time PCR. Correlation analysis of CTSL and CTSB activities/expression with their inhibitor/upregulator and event-free survival (EFS) was done using appropriate statistical tools. CTSL and CTSB protease activity and their mRNA expression were significantly higher in AML patients compared to controls (p ≤ 0.001). A strong positive correlation was observed between VEGF expression and CTSL (r = 0.812; p ≤ 0.001). Similarly, VEGF exhibited a strong positive correlation with CTSB (r = 0.501; p = 0.013). Cystatin expression though significantly high (p ≤ 0.001) in AML was negatively correlated with CTSL (r = −0.920; p ≤ 0.001) and CTSB (r = −0.580, p ≤ 0.001) expression. AML patients with higher CTSL and CTSB activity exhibited an inferior EFS (CTSL: p = 0.045; CTSB: p = 0.002) and overall survival (OS; CTSL: p = 0.05; CTSB: p = 0.004) compared to patients with lower levels of these proteases. This is the first report demonstrating increased expression of CTSL and CTSB in AML, mechanism of their increased expression in relation to VEGF, and their association with poor EFS and OS. These results suggest a potential utility of these proteases as prognostic markers for this malignancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chauhan SS, Goldstein LJ, Gottesman MM (1991) Expression of cathepsin L in human tumors. Cancer Res 51(5):1478–1481

    CAS  PubMed  Google Scholar 

  2. Yan S, Sameni M, Sloane BF (1998) Cathepsin B and human tumor progression. Biol Chem 379(2):113–123

    CAS  PubMed  Google Scholar 

  3. Svatek RS, Karam J, Karakiewicz PI et al (2008) Role of urinary cathepsin B and L in the detection of bladder urothelial cell carcinoma. J Urol 179(2):478–484, discussion 484

    Article  CAS  PubMed  Google Scholar 

  4. Xu X, Yuan G, Liu W et al (2009) Expression of cathepsin L in nasopharyngeal carcinoma and its clinical significance. Exp Oncol 31(2):102–105

    CAS  PubMed  Google Scholar 

  5. Ishidoh K, Kominami E (1995) Procathepsin L degrades extracellular matrix proteins in the presence of glycosaminoglycans in vitro. Biochem Biophys Res Commun 217(2):624–631

    Article  CAS  PubMed  Google Scholar 

  6. Mason RW, Johnson DA, Barrett AJ et al (1986) Elastinolytic activity of human cathepsin L. Biochem J 233(3):925–927

    CAS  PubMed  Google Scholar 

  7. Guillaume-Rousselet N, Jean D, Frade R (2002) Cloning and characterization of anti-cathepsin L single chain variable fragment whose expression inhibits procathepsin L secretion in human melanoma cells. Biochem J 367(Pt 1):219–227

    Article  CAS  PubMed  Google Scholar 

  8. Sameni M, Elliott E, Ziegler G et al (1995) Cathepsin B and D are localized at the surface of human breast cancer cells. Pathol Oncol Res 1(1):43–53

    Article  CAS  PubMed  Google Scholar 

  9. Friedrich B, Jung K, Lein M et al (1999) Cathepsins B, H, L and cysteine protease inhibitors in malignant prostate cell lines, primary cultured prostatic cells and prostatic tissue. Eur J Cancer 35(1):138–144

    Article  CAS  PubMed  Google Scholar 

  10. Vigneswaran N, Zhao W, Dassanayake A et al (2000) Variable expression of cathepsin B and D correlates with highly invasive and metastatic phenotype of oral cancer. Hum Pathol 31(8):931–937

    Article  CAS  PubMed  Google Scholar 

  11. Makarewicz R, Drewa G, Szymanski W et al (1995) Cathepsin B in predicting the extent of the cervix carcinoma. Neoplasma 42(1):21–24

    CAS  PubMed  Google Scholar 

  12. Trinkaus M, Vranic A, Dolenc VV et al (2005) Cathepsins B and L and their inhibitors stefin B and cystatin C as markers for malignant progression of benign meningiomas. Int J Biol Markers 20(1):50–59

    CAS  PubMed  Google Scholar 

  13. Kayser K, Richter N, Hufnagl P et al (2003) Expression, proliferation activity and clinical significance of cathepsin B and cathepsin L in operated lung cancer. Anticancer Res 23(3C):2767–2772

    CAS  PubMed  Google Scholar 

  14. Foekens JA, Kos J, Peters HA et al (1998) Prognostic significance of cathepsins B and L in primary human breast cancer. J Clin Oncol 16(3):1013–1021

    CAS  PubMed  Google Scholar 

  15. Niedergethmann M, Wostbrock B, Sturm JW et al (2004) Prognostic impact of cysteine proteases cathepsin B and cathepsin L in pancreatic adenocarcinoma. Pancreas 29(3):204–211

    Article  CAS  PubMed  Google Scholar 

  16. Asanuma K, Shirato I, Ishidoh K et al (2002) Selective modulation of the secretion of proteinases and their inhibitors by growth factors in cultured differentiated podocytes. Kidney Int 62(3):822–831

    Article  CAS  PubMed  Google Scholar 

  17. Gerber A, Wille A, Welte T et al (2001) Interleukin-6 and transforming growth factor-beta 1 control expression of cathepsins B and L in human lung epithelial cells. J Interferon Cytokine Res 21(1):11–19

    Article  CAS  PubMed  Google Scholar 

  18. Gallardo E, de Andres I, Illa I (2001) Cathepsins are upregulated by IFN-gamma/STAT1 in human muscle culture: a possible active factor in dermatomyositis. J Neuropathol Exp Neurol 60(9):847–855

    CAS  PubMed  Google Scholar 

  19. Collette J, Ulku AS, Der CJ et al (2004) Enhanced cathepsin L expression is mediated by different Ras effector pathways in fibroblasts and epithelial cells. Int J Cancer 112(2):190–199

    Article  CAS  PubMed  Google Scholar 

  20. Kim K, Cai J, Shuja S et al (1998) Presence of activated ras correlates with increased cysteine proteinase activities in human colorectal carcinomas. Int J Cancer 79(4):324–333

    Article  PubMed  Google Scholar 

  21. Gottesman MM, Sobel ME (1980) Tumor promoters and Kirsten sarcoma virus increase synthesis of a secreted glycoprotein by regulating levels of translatable mRNA. Cell 19(2):449–455

    Article  CAS  PubMed  Google Scholar 

  22. Keerthivasan S, Keerthivasan G, Mittal S et al (2007) Transcriptional upregulation of human cathepsin L by VEGF in glioblastoma cells. Gene 399(2):129–136

    Article  CAS  PubMed  Google Scholar 

  23. Muller-Esterl W, Fritz H, Kellermann J et al (1985) Genealogy of mammalian cysteine proteinase inhibitors. Common evolutionary origin of stefins, cystatins and kininogens. FEBS Lett 191(2):221–226

    Article  CAS  PubMed  Google Scholar 

  24. Konduri SD, Yanamandra N, Siddique K et al (2002) Modulation of cystatin C expression impairs the invasive and tumorigenic potential of human glioblastoma cells. Oncogene 21(57):8705–8712

    Article  CAS  PubMed  Google Scholar 

  25. Vigneswaran N, Wu J, Muller S et al (2005) Expression analysis of cystatin C and M in laser-capture microdissectioned human breast cancer cells—a preliminary study. Pathol Res Pract 200(11–12):753–762

    Article  PubMed  Google Scholar 

  26. Travaglino E, Benatti C, Malcovati L et al (2008) Biological and clinical relevance of matrix metalloproteinases 2 and 9 in acute myeloid leukaemias and myelodysplastic syndromes. Eur J Haematol 80(3):216–226

    Article  PubMed  Google Scholar 

  27. Lin LI, Lin DT, Chang CJ et al (2002) Marrow matrix metalloproteinases (MMPs) and tissue inhibitors of MMP in acute leukaemia: potential role of MMP-9 as a surrogate marker to monitor leukaemic status in patients with acute myelogenous leukaemia. Br J Haematol 117(4):835–841

    Article  CAS  PubMed  Google Scholar 

  28. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  29. Divya, Chhikara P, Mahajan VS et al (2002) Differential activity of cathepsin L in human placenta at two different stages of gestation. Placenta 23(1):59–64

    Article  CAS  PubMed  Google Scholar 

  30. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 162(1):156–159

    Article  CAS  PubMed  Google Scholar 

  31. Sambrook J, Fritsch E, Maniatis T (1987) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  32. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  33. Graf M, Reif S, Hecht K et al (2005) High expression of urokinase plasminogen activator receptor (UPA-R) in acute myeloid leukemia (AML) is associated with worse prognosis. Am J Hematol 79(1):26–35

    Article  CAS  PubMed  Google Scholar 

  34. Kobayashi H, Schmitt M, Goretzki L et al (1991) Cathepsin B efficiently activates the soluble and the tumor cell receptor-bound form of the proenzyme urokinase-type plasminogen activator (Pro-uPA). J Biol Chem 266(8):5147–5152

    CAS  PubMed  Google Scholar 

  35. Goretzki L, Schmitt M, Mann K et al (1992) Effective activation of the proenzyme form of the urokinase-type plasminogen activator (pro-uPA) by the cysteine protease cathepsin L. FEBS Lett 297(1–2):112–118

    Article  CAS  PubMed  Google Scholar 

  36. Aguayo A, Kantarjian H, Manshouri T et al (2000) Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood 96(6):2240–2245

    CAS  PubMed  Google Scholar 

  37. Buck MR, Karustis DG, Day NA et al (1992) Degradation of extracellular-matrix proteins by human cathepsin B from normal and tumour tissues. Biochem J 282(Pt 1):273–278

    CAS  PubMed  Google Scholar 

  38. Mai J, Sameni M, Mikkelsen T et al (2002) Degradation of extracellular matrix protein tenascin-C by cathepsin B: an interaction involved in the progression of gliomas. Biol Chem 383(9):1407–1413

    Article  CAS  PubMed  Google Scholar 

  39. Kruszewski WJ, Rzepko R, Wojtacki J et al (2004) Overexpression of cathepsin B correlates with angiogenesis in colon adenocarcinoma. Neoplasma 51(1):38–43

    CAS  PubMed  Google Scholar 

  40. Yanamandra N, Gumidyala KV, Waldron KG et al (2004) Blockade of cathepsin B expression in human glioblastoma cells is associated with suppression of angiogenesis. Oncogene 23(12):2224–2230

    Article  CAS  PubMed  Google Scholar 

  41. Sakhinia E, Faranghpour M, Liu Yin JA et al (2005) Routine expression profiling of microarray gene signatures in acute leukaemia by real-time PCR of human bone marrow. Br J Haematol 130(2):233–248

    Article  CAS  PubMed  Google Scholar 

  42. Sakhinia E, Farahangpour M, Tholouli E et al (2006) Comparison of gene-expression profiles in parallel bone marrow and peripheral blood samples in acute myeloid leukaemia by real-time polymerase chain reaction. J Clin Pathol 59(10):1059–1065

    Article  CAS  PubMed  Google Scholar 

  43. Devetzi M, Scorilas A, Tsiambas E et al (2009) Cathepsin B protein levels in endometrial cancer: potential value as a tumour biomarker. Gynecol Oncol 112(3):531–536

    Article  CAS  PubMed  Google Scholar 

  44. Cordes C, Bartling B, Simm A et al (2009) Simultaneous expression of cathepsins B and K in pulmonary adenocarcinomas and squamous cell carcinomas predicts poor recurrence-free and overall survival. Lung Cancer 64(1):79–85

    Article  PubMed  Google Scholar 

  45. Strojnik T, Kavalar R, Trinkaus M et al (2005) Cathepsin L in glioma progression: comparison with cathepsin B. Cancer Detect Prev 29(5):448–455

    Article  CAS  PubMed  Google Scholar 

  46. Ebert W, Knoch H, Werle B et al (1994) Prognostic value of increased lung tumor tissue cathepsin B. Anticancer Res 14(3A):895–899

    CAS  PubMed  Google Scholar 

  47. Jagodic M, Vrhovec I, Borstnar S et al (2005) Prognostic and predictive value of cathepsins D and L in operable breast cancer patients. Neoplasma 52(1):1–9

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding sources supporting the research study: Misti Jain and Abhay A. Shukla are recipients of junior and senior research fellowships from University Grants Commission, New Delhi, and Council of Scientific and Industrial Research, Government of India, respectively.

Conflict of interest statement

The authors do not have any commercial or other associations that might pose a conflict of interest in connection with the submitted article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyam S. Chauhan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, M., Bakhshi, S., Shukla, A.A. et al. Cathepsins B and L in peripheral blood mononuclear cells of pediatric acute myeloid leukemia: potential poor prognostic markers. Ann Hematol 89, 1223–1232 (2010). https://doi.org/10.1007/s00277-010-1012-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-010-1012-3

Keywords

Navigation