Skip to main content
Log in

DNA methylation analysis of tumor suppressor genes in monoclonal gammopathy of undetermined significance

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Aberrant DNA methylation is considered an important epigenetic mechanism for gene inactivation. Monoclonal gammopathy of undetermined significance (MGUS) is believed to be a precursor of multiple myeloma (MM). We have analyzed methylation status of p15 INK4B, p16 INK4A, ARF, SOCS-1, p27 KIP1, RASSF1A, and TP73 genes in bone marrow DNA samples from 21 MGUS and 44 MM patients, in order to determine the role of aberrant promoter methylation as one of the steps involved in the progression of MGUS to MM. Methylation specific polymerase chain reaction assay followed by DNA sequencing of the resulting product was performed. SOCS-1 gene methylation was significantly more frequent in MM (52%) than in MGUS (14%; p = 0,006). Methylation frequencies of TP73, ARF, p15 INK4B , p16 INK4A, and RASSF1A were comparable in MGUS: 33%, 29%, 29%, 5%, and 0%, to that observed in MM: 45%, 29%, 32%, 7%, and 2%. All patients lacked methylation at p27 KIP1 gene. In both entities, a concurrent methylation of p15 INK4B and TP73 was observed. The mean methylation index of MGUS was lower (0.16) than that of MM (0.24; p < 0.05). Correlations with clinicopathologic characteristics showed a higher mean age in MGUS patients with SOCS-1 methylated (p < 0.001); meanwhile in MM, methylation of p15 INK4B was more frequent in males (p = 0.009) and IgG isotype (p = 0.038). Our findings suggest methylation of TP73, ARF, p15 INK4B, and p16 INK4A as early events in the pathogenesis and development of plasma cell disorders; meanwhile, SOCS-1 methylation would be an important step in the clonal evolution from MGUS to MM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ahuja N, Li Q, Nohan AL, Baylin SB, Issa JP (1998) Aging and DNA methylation in colorectal mucosa and cancer. Cancer Res 58:5489–5494

    CAS  PubMed  Google Scholar 

  2. Bird A (1986) CpG-rich islands and the function of DNA methylation. Nature 321:209–213

    Article  CAS  PubMed  Google Scholar 

  3. Boultwood J, Wainscoat JS (2007) Gene silencing by DNA methylation in haematological malignancies. Br J Haematol 138:3–11

    Article  CAS  PubMed  Google Scholar 

  4. Chim CS, Liang R, Fung TK, Choi CL, Kwong YL (2005) Infrequent epigenetic dysregulation of CIP/KIP family of cyclin-dependent kinase inhibitors in multiple myeloma. Leukemia 19:2352–2353

    Article  CAS  PubMed  Google Scholar 

  5. Chim CS, Liang R, Fung TK, Choi CL, Kwong YL (2007) Epigenetic dysregulation of the death-associated protein kinase/p14/HDM2/p53/Apaf-1 apoptosis pathway in multiple myeloma. J Clin Pathol 60:664–669

    Article  CAS  PubMed  Google Scholar 

  6. Chim CS, Liang R, Leung MH, Kwong YL (2007) Aberrant gene methylation implicated in the progression of monoclonal gammopathy of undetermined significance to multiple myeloma. J Clin Pathol 60:104–106

    Article  CAS  PubMed  Google Scholar 

  7. Costello JF, Fruhwald MD, Smiraglia DJ, Rush LJ, Robertson GP, Gao X, Wright FA, Feramisco JD, Peltomäki D, Lang JC, Schuller DE, Yu L, Bloomfield CD, Caligiuri MA, Yates A, Nishikawa R, Su Huang H, Petrelli NJ, Zhang X, O’Dorisio MS, Held WA, Cavenee WK, Plass C (2000) Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet 24:132–138

    Article  CAS  PubMed  Google Scholar 

  8. Depil S, Saudemont A, Quesnel B (2003) SOCS-1 gene methylation is frequent but does not appear to have prognostic value in patients with multiple myeloma. Leukemia 17:1678–1679

    Article  CAS  PubMed  Google Scholar 

  9. Durie BG, Salmon E (1975) A clinical staging system for multiple myeloma: correlation of measured myeloma cell mass with presenting clinical features, response to treatment and survival. Cancer 36:842–854

    Article  CAS  PubMed  Google Scholar 

  10. Esteller M, Tortola S, Toyota M, Capella G, Peinado M, Baylin S (2000) Hypermethylation-associated inactivation of p14ARF is independent of p16INK4a methylation and p53 mutational status. Cancer Res 60:129–133

    CAS  PubMed  Google Scholar 

  11. Esteller M (2003) Profiling aberrant DNA methylation in hematologic neoplasms: a view from the tip of the iceberg. Clin Immunol 109:80–88

    Article  CAS  PubMed  Google Scholar 

  12. Feinberg AP (2004) The epigenetics of cancer etiology. Semin Cancer Biol 14:427–432

    Article  CAS  PubMed  Google Scholar 

  13. Feinberg AP, Tycko B (2004) The history of cancer epigenetics. Nat Rev Cancer 4:143–153

    Article  CAS  PubMed  Google Scholar 

  14. Gallagher S, Kefford F, Rizos H (2006) The ARF tumor suppressor. Int J Biochem Cell Biol 38:1637–1641

    Article  CAS  PubMed  Google Scholar 

  15. Galm O, Wilop S, Reichelt J, Jost E, Gehbauer G, Herman JG, Oseika R (2004) DNA methylation changes in multiple myeloma. Leukemia 18:1687–1692

    Article  CAS  PubMed  Google Scholar 

  16. Galm O, Herman J, Baylin S (2006) The fundamental role of epigenetics in hematopoietic malignancies. Blood Rev 20:1–13

    Article  CAS  PubMed  Google Scholar 

  17. Gonzalez-Paz N, Chung WJ, McClure RF, Blood E, Oken MM, Van Ness B, James CD, Kurtin PJ, Henderson K, Ahmann GJ, Gertz M, Lacy M, Dispenzieri A, Greipp PR, Fonseca R (2007) Tumor suppressor p16 methylation in multiple myeloma: biological and clinical implications. Blood 109:1228–1232

    Article  CAS  PubMed  Google Scholar 

  18. Greipp P, San Miguel J, Durie BG, Crowley J, Barlogie B, Bladé J, Boccadoro M, Child A, Avert-Loiseau H, Kyle R, Lahuerta J, Ludwing H, Morgan G, Powles R, Shimizu K, Shustik C, Sonneveld P, Tosi P, Turesson I, Westin J (2005) International staging system for multiple myeloma. J Clin Oncol 23:3412–3420

    Article  PubMed  Google Scholar 

  19. Guillerm G, Gyan E, Wolowiec D, Facon T, Avet-Loiseau H, Kuliczkowski K (2001) p16(INK4a) and p15(INK4b) gene methylations in plasma cells from monoclonal gammopathy of undetermined significance. Blood 98:244–246

    Article  CAS  PubMed  Google Scholar 

  20. Guillerm G, Depil S, Wolowiec D, Quesnel B (2003) Different prognostic values of p15 INK4b and p16 INK4a gene methylation in multiple myeloma. Haematologica 88:476–478

    PubMed  Google Scholar 

  21. Herman J, Graff J, Myohanen S, Nelkin B, Baylin S (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 93:9821–9826

    Article  CAS  PubMed  Google Scholar 

  22. Herman J, Baylin S (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349:2042–2054

    Article  CAS  PubMed  Google Scholar 

  23. Hideshima T, Bergsagel PL, Kuehl W, Anderson K (2004) Advances in biology of multiple myeloma: clinical applications. Blood 104:607–618

    Article  CAS  PubMed  Google Scholar 

  24. Jones P, Baylin S (2007) The epigenomics of cancer. Cell 128:683–692

    Article  CAS  PubMed  Google Scholar 

  25. Klein B, Zhang XG, Lu ZY, Bataille R (1995) Interleukin-6 in human multiple myeloma. Blood 85:863–872

    CAS  PubMed  Google Scholar 

  26. Krämer A, Schultheis B, Bergmann J, Willer A, Hegenbart U, Ho AD, Goldschmidt H, Hehlmann R (2002) Alterations of the cyclin D1/pRb/p16(INK4A) pathway in multiple myeloma. Leukemia 16:1844–1851

    Article  PubMed  Google Scholar 

  27. Kreb D, Hilton D (2000) SOCS: physiological suppressor of cytokine signaling. J Cell Science 113:2813–1819

    Google Scholar 

  28. Kwabi-Addo B, Chung W, Shen L, Ittmann M, Wheeler T, Jelinek J, Issa J (2007) Age-related DNA methylation changes in normal human prostate tissues. Clin Cancer Res 13:3796–3802

    Article  CAS  PubMed  Google Scholar 

  29. Kyle RA, Rajkumar SV (2004) Multiple myeloma. N Engl J Med 351:1860–1873

    Article  CAS  PubMed  Google Scholar 

  30. Kyle R, Therneau T, Rajkumar V, Larson D, Plevak M, Oxford J, Dispenzieri A, Katzmann J, Melton J (2006) Prevalence of monoclonal gammopathy of undetermined significance. N Engl J Med 345:1362–1369

    Article  Google Scholar 

  31. Lacy MQ, Donovan KA, Heimbach JK, Ahmann GJ, Lust JA (1999) Comparison of IL-1 beta expression by in situ hybridization in monoclonal gammopathy of undetermined significance and multiple myeloma. Blood 93:303–305

    Google Scholar 

  32. Le MH, Yang HY (2003) Regulators of G1 cyclin-dependent kinases and cancer. Cancer Metast Rev 22:435–449

    Article  Google Scholar 

  33. Martin P, Garcia-Cosio M, Santon A, Bellas C (2008) Aberrant gene promoter methylation in plasma cell dyscrasias. Exp Mol Pathol 84:256–261

    Article  CAS  PubMed  Google Scholar 

  34. Mateos MV, García-Sanz R, Lopez-Perez R, Balanzategui A, González MI, Fernández-Calvo J, Moro MJ, Hernandez J, Caballero MD, González M, San Miguel JF (2001) P16/INK4A gene inactivation by hypermethylation is associated with aggressive variants of monoclonal gammopathies. The Hematology J 2:146–149

    Article  CAS  Google Scholar 

  35. Mateos MV, Garcia-Sanz R, Lopez-Perez R, Moro MJ, Ocio E, Hernandez J, Megido M, Caballero MD, Fernández-Calvo J, Bárez A, Almeida J, Orfão A, González M, San Miguel JF (2002) Methylation is an inactivating mechanism of the p16 gene in multiple myeloma associated with high plasma cell proliferation and short survival. Br J Haematol 118:1034–1040

    Article  CAS  PubMed  Google Scholar 

  36. Moll U, Slade N (2004) p63 and p73: roles in development and tumor formation. Mol Cancer Res 2:371–386

    CAS  PubMed  Google Scholar 

  37. Nakatsuka S, Liu A, Yao M, Takakuwa T, Tomita Y, Hoshida Y, Nishiu M, Aozasa K (2003) Methylation of promoter region in p27 gene plays a role in the development of lymphoid malignancies. Int J Oncol 22:561–568

    CAS  PubMed  Google Scholar 

  38. Ng MH, Chung YF, Lo KW, Wickham NKW, Lee JCK, Huand DP (1997) Hypermethylation of p16 and p15 genes in multiple myeloma. Blood 89:2500–2506

    CAS  PubMed  Google Scholar 

  39. Ogata A, Anderson KC (1996) Therapeutic strategies for inhibition of interleukine-6 mediated multiple myeloma cell growth. Leuk Res 20:303–307

    Article  CAS  PubMed  Google Scholar 

  40. Quelle DE, Zindy F, Ashmun RA, Sherr CJ (1995) Alternative ready frames of the INK4a tumor suppressor gene encodes two unrelated proteins capable of inducing cell cycle arrest. Cell 83:993–1000

    Article  CAS  PubMed  Google Scholar 

  41. Ramadan S, Terrinoni A, Catani MV, Sayan AE, Knight RA, Mueller M, Krammer PH, Melino G, Candi E (2005) p73 induces apoptosis by different mechanims. Biochem Bioph Res Comm 331:713–717

    Article  CAS  Google Scholar 

  42. Reddy J, Shivapurkar N, Takahashi T, Parikh G, Stastny V, Echebiri C, Crumrine K, Zöchbauer-Müller S, Drach J, Zheng Y, Feng Z, Kroft SH, McKenna RW, Gazdar AF (2005) Differential methylation of genes that regulate cytokine signaling in lymphoid and hematopoietic tumors. Oncogene 24:732–736

    Article  CAS  PubMed  Google Scholar 

  43. San Miguel J, Garcia-Sanz R, Lopez-Perez R (2005) Analysis of methylation pattern in multiple myeloma. Acta Haematol 114(Suppl 1):23–26

    Article  CAS  PubMed  Google Scholar 

  44. Seidl S, Ackermann J, Kaufmann H, Keck A, Nosslinger T, Zielinski CC, Drach J, Zochbauer-Mullerancer S (2004) DNA-methylation analysis identifies the E-cadherin gene as a potential marker of disease progression in patients with monoclonal gammopathies. Cancer 15:2598–2606

    Article  Google Scholar 

  45. Shivakumar L, Minna J, Sakamaki T, Pestell R, White M (2002) The RASSF1A tumor suppressor blocks cell cycle progression and inhibits cyclin D1 accumulation. Mol Cell Biol 22:4309–4318

    Article  CAS  PubMed  Google Scholar 

  46. Takahashi T, Shivapurkar N, Reddy J, Shigematsu H, Miyajima K, Suzuki M, Toyooka S, Zöchbauer-Müller S, Drach J, Parikh G, Zheng Y, Feng Z, Kroft SH, Timmons C, McKenna RW, Gazdar AF (2004) DNA methylation profiles of lymphoid and hematopoietic malignancies. Clin Cancer Res 10:2928–2935

    Article  CAS  PubMed  Google Scholar 

  47. Uchida T, Kinoshita T, Ohno T, Nagai H, Saito H (2001) Hypermethylation of p16INK4a gene promoter during the progression of plasma cell dyscrasia. Leukemia 15:157–165

    Article  CAS  PubMed  Google Scholar 

  48. Vidal A, Koff A (2000) Cell-cycle inhibitors: three families united by a common cause. Gene 247:1–15

    Article  CAS  PubMed  Google Scholar 

  49. Vos MD, Ellis CA, Bell A, Birrer MJ, Clark GJ (2000) Ras uses the novel tumor suppressor RASSF1 as an effector to mediate apoptosis. J Biol Chem 275:35669–35672

    Article  CAS  PubMed  Google Scholar 

  50. Wong IHN, Ng MLH, Huang DO, Lee JC (2000) Aberrant p15 promoter methylation in adult and childhood acute leukemias of nearly all morphologic subtypes: potential prognostic implications. Blood 95:1942–1949

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Research Council (CONICET) and the National Agency of Scientific and Technical Promotion (ANPCyT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irma Slavutsky.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Correlations between methylation and clinicopathologic characteristics in MGUS patients (DOC 38.5 kb)

Table S2

Correlations between gene methylation and clinicopathologic characteristics in MM patients (DOC 49.5 kb)

Table S3

Correlations between MI and clinical parameters in MM and MGUS (DOC 40 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanganelli, C., Arbelbide, J., Fantl, D.B. et al. DNA methylation analysis of tumor suppressor genes in monoclonal gammopathy of undetermined significance. Ann Hematol 89, 191–199 (2010). https://doi.org/10.1007/s00277-009-0818-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-009-0818-3

Keywords

Navigation