Skip to main content

Advertisement

Log in

Aberrant hypomethylation of the cancer–testis antigen PRAME correlates with PRAME expression in acute myeloid leukemia

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

PRAME is a tumor-associated antigen, which belongs to the family of cancer–testis antigens (CTA). The expression of CTA is mainly restricted to the testis and various tumors. In contrast to other CTA, PRAME expression is also frequently detected in acute and chronic leukemias. Due to this expression pattern, PRAME has attracted great interest as a prognostic tumor marker that can be used for the detection of minimal residual disease and as a potential target for immunotherapy. In acute myeloid leukemia (AML), PRAME expression has been observed in 30–64% of cases. To evaluate whether epigenetic mechanisms contribute to PRAME activation in AML, we studied DNA methylation of 15 CpG dinucleotides within a CpG-rich region located in the intron 1 of the PRAME gene. DNA methylation was determined by sequence analysis of cloned PCR products generated from bisulfite-treated genomic DNA. Methylation patterns were correlated with PRAME mRNA levels as determined by microarray analysis and real-time PCR. We found almost complete methylation in mononuclear blood cells from two healthy donors and in bone marrow cells of four PRAME-negative AML patients. In contrast, the degree of PRAME methylation was clearly reduced in four PRAME-positive AML bone marrow samples. In particular, these samples were characterized by the presence of clones, which were completely devoid of methylation. The significant inverse correlation between the degree of methylation and PRAME expression suggests a causal role of DNA methylation in PRAME regulation. Such a role is further supported by the observation that treatment of PRAME-negative cell lines U-937 and THP-1 with the demethylating agent 5′-Aza-2′dC resulted in a dose-related upregulation of PRAME expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Berg T, Guo Y, Abdelkarim M, Fliegauf M, Lubbert M (2007) Reversal of p15/INK4b hypermethylation in AML1/ETO-positive and -negative myeloid leukemia cell lines. Leuk Res 31(4):497–506. doi:10.1016/j.leukres.2006.08.008

    Article  PubMed  CAS  Google Scholar 

  2. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 162(1):156–159. doi:10.1016/0003-2697(87)90021-2

    Article  PubMed  CAS  Google Scholar 

  3. Don RH, Cox PT, Wainwright BJ, Baker K, Mattick JS (1991) Touchdown’ PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res 19(14):4008. doi:10.1093/nar/19.14.4008

    Article  PubMed  CAS  Google Scholar 

  4. Doolan P, Clynes M, Kennedy S, Mehta JP, Crown J, O’Driscoll L (2007) Prevalence and prognostic and predictive relevance of PRAME in breast cancer. Breast Cancer Res Treat 109:359–365

    Article  PubMed  CAS  Google Scholar 

  5. Durig J, Nuckel H, Huttmann A, Kruse E, Holter T, Halfmeyer K et al (2003) Expression of ribosomal and translation-associated genes is correlated with a favorable clinical course in chronic lymphocytic leukemia. Blood 101(7):2748–2755. doi:10.1182/blood-2002-09-2683

    Article  PubMed  CAS  Google Scholar 

  6. Eisele L, Klein-Hitpass L, Chatzimanolis N, Opalka B, Boes T, Seeber S et al (2007) Differential expression of drug-resistance-related genes between sensitive and resistant blasts in acute myeloid leukemia. Acta Haematol 117(1):8–15. doi:10.1159/000096854

    Article  PubMed  CAS  Google Scholar 

  7. Epping MT, Bernards R (2006) A causal role for the human tumor antigen preferentially expressed antigen of melanoma in cancer. Cancer Res 66(22):10639–10642. doi:10.1158/0008-5472.CAN-06-2522

    Article  PubMed  CAS  Google Scholar 

  8. Epping MT, Wang L, Edel MJ, Carlee L, Hernandez M, Bernards R (2005) The human tumor antigen PRAME is a dominant repressor of retinoic acid receptor signaling. Cell 122(6):835–847. doi:10.1016/j.cell.2005.07.003

    Article  PubMed  CAS  Google Scholar 

  9. Esteller M (2003) Profiling aberrant DNA methylation in hematologic neoplasms: a view from the tip of the iceberg. Clin Immunol 109(1):80–88. doi:10.1016/S1521-6616(03)00208-0

    Article  PubMed  CAS  Google Scholar 

  10. Flasshove M, Meusers P, Schutte J, Noppeney R, Beelen DW, Sohrab S et al (2000) Long-term survival after induction therapy with idarubicin and cytosine arabinoside for de novo acute myeloid leukemia. Ann Hematol 79(10):533–542. doi:10.1007/s002770000193

    Article  PubMed  CAS  Google Scholar 

  11. Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196(2):261–282. doi:10.1016/0022-2836(87)90689-9

    Article  PubMed  CAS  Google Scholar 

  12. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5(10):R80 doi:10.1186/gb-2004-5-10-r80

    Article  PubMed  Google Scholar 

  13. Goellner S, Steinbach D, Schenk T, Gruhn B, Zintl F, Ramsay E et al (2006) Childhood acute myelogenous leukaemia: association between PRAME, apoptosis- and MDR-related gene expression. Eur J Cancer 42(16):2807–2814. doi:10.1016/j.ejca.2006.06.018

    Article  PubMed  CAS  Google Scholar 

  14. Greiner J, Ringhoffer M, Simikopinko O, Szmaragowska A, Huebsch S, Maurer U et al (2000) Simultaneous expression of different immunogenic antigens in acute myeloid leukemia. Exp Hematol 28(12):1413–1422. doi:10.1016/S0301-472X(00)00550-6

    Article  PubMed  CAS  Google Scholar 

  15. Greiner J, Ringhoffer M, Taniguchi M, Li L, Schmitt A, Shiku H et al (2004) mRNA expression of leukemia-associated antigens in patients with acute myeloid leukemia for the development of specific immunotherapies. Int J Cancer 108(5):704–711. doi:10.1002/ijc.11623

    Article  PubMed  CAS  Google Scholar 

  16. Greiner J, Schmitt M, Li L, Giannopoulos K, Bosch K, Schmitt A et al (2006) Expression of tumor-associated antigens in acute myeloid leukemia: implications for specific immunotherapeutic approaches. Blood 108(13):4109–4117. doi:10.1182/blood-2006-01-023127

    Article  PubMed  CAS  Google Scholar 

  17. Griffioen M, Kessler JH, Borghi M, van Soest RA, van der Minne CE, Nouta J et al (2006) Detection and functional analysis of CD8+ T cells specific for PRAME: a target for T-cell therapy. Clin Cancer Res 12(10):3130–3136. doi:10.1158/1078-0432.CCR-05-2578

    Article  PubMed  CAS  Google Scholar 

  18. Ikeda H, Matsushita M, Kawakami H (1999) PRAME protein expressed in leukemia cells as a target molecule for immunotherapy. Rinsho Ketsueki 40(6):484–486

    PubMed  CAS  Google Scholar 

  19. Irizarry R, Gautier L, Bolstad BM, Miller C, Astrand M, Cope LM, Gentleman R, Gentry J, Halling C, Huber W, MacDonald J, Rubinstein B, Workman C, Zhang J (2006) Affy: methods for Affymetrix oligonucleotide arrays. R package version 1.12.2. 2006.

  20. Jones PA, Laird PW (1999) Cancer epigenetics comes of age. Nat Genet 21(2):163–167 doi:10.1038/5947

    Article  PubMed  CAS  Google Scholar 

  21. Kirkin AF, Dzhandzhugazyan K, Zeuthen J (1998) The immunogenic properties of melanoma-associated antigens recognized by cytotoxic T lymphocytes. Exp Clin Immunogenet 15(1):19–32. doi:10.1159/000019050

    Article  PubMed  CAS  Google Scholar 

  22. Kirkin AF, Dzhandzhugazyan K, Zeuthen J (1998) Melanoma-associated antigens recognized by cytotoxic T lymphocytes. APMIS 106(7):665–679

    Article  PubMed  CAS  Google Scholar 

  23. Li L, Giannopoulos K, Reinhardt P, Tabarkiewicz J, Schmitt A, Greiner J et al (2006) Immunotherapy for patients with acute myeloid leukemia using autologous dendritic cells generated from leukemic blasts. Int J Oncol 28(4):855–861

    PubMed  CAS  Google Scholar 

  24. Matsushita M, Ikeda H, Kizaki M, Okamoto S, Ogasawara M, Ikeda Y et al (2001) Quantitative monitoring of the PRAME gene for the detection of minimal residual disease in leukaemia. Br J Haematol 112(4):916–926. doi:10.1046/j.1365-2141.2001.02670.x

    Article  PubMed  CAS  Google Scholar 

  25. Oberthuer A, Hero B, Spitz R, Berthold F, Fischer M (2004) The tumor-associated antigen PRAME is universally expressed in high-stage neuroblastoma and associated with poor outcome. Clin Cancer Res 10(13):4307–4313. doi:10.1158/1078-0432.CCR-03-0813

    Article  PubMed  CAS  Google Scholar 

  26. Paydas S, Tanriverdi K, Yavuz S, Disel U, Baslamisli F, Burgut R (2005) PRAME mRNA levels in cases with acute leukemia: clinical importance and future prospects. Am J Hematol 79(4):257–261. doi:10.1002/ajh.20425

    Article  PubMed  CAS  Google Scholar 

  27. Pellat-Deceunynck C, Mellerin MP, Labarriere N, Jego G, Moreau-Aubry A, Harousseau JL et al (2000) The cancer germ-line genes MAGE-1, MAGE-3 and PRAME are commonly expressed by human myeloma cells. Eur J Immunol 30(3):803–809. doi:10.1002/1521-4141(200003)30:3<803::AID-IMMU803>3.0.CO;2-P

    Article  PubMed  CAS  Google Scholar 

  28. Proto-Siqueira R, Falcao RP, de Souza CA, Ismael SJ, Zago MA (2003) The expression of PRAME in chronic lymphoproliferative disorders. Leuk Res 27(5):393–396. doi:10.1016/S0145-2126(02)00217-5

    Article  PubMed  CAS  Google Scholar 

  29. Radich JP, Dai H, Mao M, Oehler V, Schelter J, Druker B et al (2006) Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc Natl Acad Sci U S A 103(8):2794–2799. doi:10.1073/pnas.0510423103

    Article  PubMed  CAS  Google Scholar 

  30. Roman-Gomez J, Jimenez-Velasco A, Agirre X, Castillejo JA, Navarro G, Jose-Eneriz ES et al (2007) Epigenetic regulation of PRAME gene in chronic myeloid leukemia. Leuk Res 31:1521–1528

    Article  PubMed  CAS  Google Scholar 

  31. Schenk T, Stengel S, Goellner S, Steinbach D, Saluz HP (2007) Hypomethylation of PRAME is responsible for its aberrant overexpression in human malignancies. Genes Chromosomes Cancer 46(9):796–804. doi:10.1002/gcc.20465

    Article  PubMed  CAS  Google Scholar 

  32. Shen L, Kondo Y, Guo Y, Zhang J, Zhang L, Ahmed S et al (2007) Genome-wide profiling of DNA methylation reveals a class of normally methylated CpG island promoters. PLoS Genet 3(10):2023–2036. doi:10.1371/journal.pgen.0030181

    Article  PubMed  CAS  Google Scholar 

  33. Sigalotti L, Fratta E, Coral S, Tanzarella S, Danielli R, Colizzi F et al (2004) Intratumor heterogeneity of cancer/testis antigens expression in human cutaneous melanoma is methylation-regulated and functionally reverted by 5-aza-2′-deoxycytidine. Cancer Res 64(24):9167–9171. doi:10.1158/0008-5472.CAN-04-1442

    Article  PubMed  CAS  Google Scholar 

  34. Simpson AJ, Caballero OL, Jungbluth A, Chen YT, Old LJ (2005) Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer 5(8):615–625 doi:10.1038/nrc1669

    Article  PubMed  CAS  Google Scholar 

  35. Steinbach D, Hermann J, Viehmann S, Zintl F, Gruhn B (2002) Clinical implications of PRAME gene expression in childhood acute myeloid leukemia. Cancer Genet Cytogenet 133(2):118–123. doi:10.1016/S0165-4608(01)00570-2

    Article  PubMed  CAS  Google Scholar 

  36. Steinbach D, Schramm A, Eggert A, Onda M, Dawczynski K, Rump A et al (2006) Identification of a set of seven genes for the monitoring of minimal residual disease in pediatric acute myeloid leukemia. Clin Cancer Res 12(8):2434–2441. doi:10.1158/1078-0432.CCR-05-2552

    Article  PubMed  CAS  Google Scholar 

  37. Tajeddine N, Gala JL, Louis M, Van Schoor M, Tombal B, Gailly P (2005) Tumor-associated antigen preferentially expressed antigen of melanoma (PRAME) induces caspase-independent cell death in vitro and reduces tumorigenicity in vivo. Cancer Res 65(16):7348–7355. doi:10.1158/0008-5472.CAN-04-4011

    Article  PubMed  CAS  Google Scholar 

  38. Tajeddine N, Millard I, Gailly P, Gala JL (2006) Real-time RT-PCR quantification of PRAME gene expression for monitoring minimal residual disease in acute myeloblastic leukaemia. Clin Chem Lab Med 44(5):548–555. doi:10.1515/CCLM.2006.106

    Article  PubMed  CAS  Google Scholar 

  39. Takai D, Jones PA (2002) Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci U S A 99(6):3740–3745. doi:10.1073/pnas.052410099

    Article  PubMed  CAS  Google Scholar 

  40. van Baren N, Chambost H, Ferrant A, Michaux L, Ikeda H, Millard I et al (1998) PRAME, a gene encoding an antigen recognized on a human melanoma by cytolytic T cells, is expressed in acute leukaemia cells. Br J Haematol 102(5):1376–1379. doi:10.1046/j.1365-2141.1998.00982.x

    Article  PubMed  Google Scholar 

  41. Willenbrock K, Kuppers R, Renne C, Brune V, Eckerle S, Weidmann E et al (2006) Common features and differences in the transcriptome of large cell anaplastic lymphoma and classical Hodgkin’s lymphoma. Haematologica 91(5):596–604

    PubMed  CAS  Google Scholar 

  42. Zeschnigk M, Schmitz B, Dittrich B, Buiting K, Horsthemke B, Doerfler W (1997) Imprinted segments in the human genome: different DNA methylation patterns in the Prader–Willi/Angelman syndrome region as determined by the genomic sequencing method. Hum Mol Genet 6(3):387–395. doi:10.1093/hmg/6.3.387

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina A. Ortmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortmann, C.A., Eisele, L., Nückel, H. et al. Aberrant hypomethylation of the cancer–testis antigen PRAME correlates with PRAME expression in acute myeloid leukemia. Ann Hematol 87, 809–818 (2008). https://doi.org/10.1007/s00277-008-0514-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-008-0514-8

Keywords

Navigation