Skip to main content

Advertisement

Log in

Mesenchymal stem cells obtained after bone marrow transplantation or peripheral blood stem cell transplantation originate from host tissue

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSC) obtained from human bone marrow have been described as adult stem cells with the ability of extensive self-renewal and clonal expansion, as well as the capacity to differentiate into various tissue types and to modulate the immune system. Some data indicate that leukapheresis products may also contain non-hematopoietic stem cells, as they occur in whole bone marrow transplantation (BMT). However, there is still controversy whether MSC expand in the host after transplantation like blood progenitor cells do. Therefore, we were interested in finding out if graft MSC can be detected in leukapheresis products and in bone marrow after BMT and peripheral blood stem cell transplantation (PBSCT). Every sample from total bone marrow transplants exhibited growth of MSC after in vitro culture, but not one of nine leukapheresis products did. In addition, bone marrow aspirates of 9 patients receiving BMT and of 18 patients after PBSCT were examined for origin of MSC. Almost all MSC samples exhibited a complete host profile, whereas peripheral blood cells were of donor origin. We conclude that even if trace amounts of MSC are co-transplanted during PBSCT or BMT, they do not expand significantly in the host bone marrow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650

    Article  PubMed  Google Scholar 

  2. Caplan AI (1994) The mesengenic process. Clin Plast Surg 21:429–435

    PubMed  Google Scholar 

  3. Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM (2001) Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 98:2615–2625

    Article  PubMed  Google Scholar 

  4. Cassiede P, Dennis JE, Ma F, Caplan AI (1996) Osteochondrogenic potential of marrow mesenchymal progenitor cells exposed to TGF-beta 1 or PDGF-BB as assayed in vivo and in vitro. J Bone Miner Res 11:1264–1273

    PubMed  Google Scholar 

  5. Kadiyala S, Young RG, Thiede MA, Bruder SP (1997) Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant 6:125–134

    Article  PubMed  Google Scholar 

  6. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  Google Scholar 

  7. Jaiswal RK, Jaiswal N, Bruder SP, Mbalaviele G, Marshak DR, Pittenger MF (2000) Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J Biol Chem 275:9645–9652

    Article  PubMed  Google Scholar 

  8. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105:93–98

    Article  PubMed  Google Scholar 

  9. Wakitani S, Saito T, Caplan AI (1995) Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 18:1417–1426

    Article  PubMed  Google Scholar 

  10. Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G et al (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279:1528–1530

    Article  PubMed  Google Scholar 

  11. Kopen GC, Prockop DJ, Phinney DG (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci U S A 96:10711–10716

    Article  PubMed  Google Scholar 

  12. Liechty KW, MacKenzie TC, Shaaban AF, Radu A, Moseley AM, Deans R et al (2000) Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 6:1282–1286

    Article  PubMed  Google Scholar 

  13. Haynesworth SE, Baber MA, Caplan AI (1996) Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1 alpha. J Cell Physiol 166:585–592

    Article  PubMed  Google Scholar 

  14. Majumdar MK, Thiede MA, Mosca JD, Moorman M, Gerson SL (1998) Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol 176:57–66

    Article  PubMed  Google Scholar 

  15. Cheng L, Qasba P, Vanguri P, Thiede MA (2000) Human mesenchymal stem cells support megakaryocyte and pro-platelet formation from CD34(+) hematopoietic progenitor cells. J Cell Physiol 184:58–69

    Article  PubMed  Google Scholar 

  16. Koc ON, Gerson SL, Cooper BW, Dyhouse SM, Haynesworth SE, Caplan AI et al (2000) Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol 18:307–316

    PubMed  Google Scholar 

  17. Almeida-Porada G, El Shabrawy D, Porada C, Zanjani ED (2002) Differentiative potential of human metanephric mesenchymal cells. Exp Hematol 30:1454–1462

    Article  PubMed  Google Scholar 

  18. Li Y, Hisha H, Inaba M, Lian Z, Yu C, Kawamura M et al (2000) Evidence for migration of donor bone marrow stromal cells into recipient thymus after bone marrow transplantation plus bone grafts: a role of stromal cells in positive selection. Exp Hematol 28:950–960

    Article  PubMed  Google Scholar 

  19. Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S et al (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 30:42–48

    Article  PubMed  Google Scholar 

  20. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P et al (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843

    Article  PubMed  Google Scholar 

  21. Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, Uzunel M et al (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363:1439–1441

    Article  PubMed  Google Scholar 

  22. Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O (2003) Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 57:11–20

    Article  PubMed  Google Scholar 

  23. Rasmusson I, Ringden O, Sundberg B, Le Blanc K (2003) Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation 76:1208–1213

    Article  PubMed  Google Scholar 

  24. Gotherstrom C, Ringden O, Westgren M, Tammik C, Le Blanc K (2004) Immunomodulatory effects of human foetal liver-derived mesenchymal stem cells. Bone Marrow Transplant 33:1167

    Article  Google Scholar 

  25. Friedenstein AJ, Gorskaja JF, Kulagina NN (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 4:267–274

    PubMed  Google Scholar 

  26. Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J et al (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7:430–436

    Article  PubMed  Google Scholar 

  27. Conrad C, Gottgens B, Kinston S, Ellwart J, Huss R (2002) GATA transcription in a small rhodamine 123(low)CD34(+) subpopulation of a peripheral blood-derived CD34(−)CD105(+) mesenchymal cell line. Exp Hematol 30:887–895

    Article  PubMed  Google Scholar 

  28. Lazarus HM, Haynesworth SE, Gerson SL, Caplan AI (1997) Human bone marrow-derived mesenchymal (stromal) progenitor cells (MPCs) cannot be recovered from peripheral blood progenitor cell collections. J Hematother 6:447–455

    PubMed  Google Scholar 

  29. Cilloni D, Carlo-Stella C, Falzetti F, Sammarelli G, Regazzi E, Colla S et al (2000) Limited engraftment capacity of bone marrow-derived mesenchymal cells following T-cell-depleted hematopoietic stem cell transplantation. Blood 96:3637–3643

    PubMed  Google Scholar 

  30. Keating A, Singer JW, Killen PD, Striker GE, Salo AC, Sanders J et al (1982) Donor origin of the in vitro haematopoietic microenvironment after marrow transplantation in man. Nature 298:280–283

    Article  PubMed  Google Scholar 

  31. Simmons PJ, Przepiorka D, Thomas ED, Torok-Storb B (1987) Host origin of marrow stromal cells following allogeneic bone marrow transplantation. Nature 328:429–432

    Article  PubMed  Google Scholar 

  32. Hongeng S, Petvises S, Rerkamnuaychoke B, Worapongpaiboon S, Tardtong P, Apibal S et al (2001) Host origin of marrow mesenchymal stem cells following allogeneic cord-blood stem-cell transplantation. Int J Hematol 74:235–236

    PubMed  Google Scholar 

  33. Koc ON, Peters C, Aubourg P, Raghavan S, Dyhouse S, DeGasperi R et al (1999) Bone marrow-derived mesenchymal stem cells remain host-derived despite successful hematopoietic engraftment after allogeneic transplantation in patients with lysosomal and peroxisomal storage diseases. Exp Hematol 27:1675–1681

    Article  PubMed  Google Scholar 

  34. Laver J, Jhanwar SC, O’Reilly RJ, Castro-Malaspina H (1987) Host origin of the human hematopoietic microenvironment following allogeneic bone marrow transplantation. Blood 70:1966–1968

    PubMed  Google Scholar 

  35. Devine SM, Bartholomew AM, Mahmud N, Nelson M, Patil S, Hardy W et al (2001) Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Exp Hematol 29:244–255

    Article  PubMed  Google Scholar 

  36. Mosca JD, Hendricks JK, Buyaner D, Davis-Sproul J, Chuang LC, Majumdar MK et al (2000) Mesenchymal stem cells as vehicles for gene delivery. Clin Orthop Relat Res:S71–S90

    Article  Google Scholar 

  37. Bruder SP, Jaiswal N, Haynesworth SE (1997) Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 64:278–294

    Article  PubMed  Google Scholar 

  38. Brendel C, Kuklick L, Hartmann O, Kim TD, Boudriot U, Schwell D et al (2005) Distinct gene expression profile of human mesenchymal stem cells in comparison to skin fibroblasts employing cDNA microarray analysis of 9600 genes. Gene Expr (in press)

  39. Thiede C, Florek M, Bornhäuser M, Ritter M, Mohr B, Brendel C et al (1999) Rapid quantification of mixed chimerism using multiplex amplification of short tandem repeat markers and fluorescence detection. Bone Marrow Transplant 23:1055–1060

    Article  PubMed  Google Scholar 

  40. Reyes M, Koodie L, Jahagirdar B, Verfaillie CM (2001) Ex vivo and in vivo primitive hematopoiesis from a non-hematopoietic stem cell. Blood 98:713a

    Article  Google Scholar 

  41. Galotto M, Berisso G, Delfino L, Podesta M, Ottaggio L, Dallorso S et al (1999) Stromal damage as consequence of high-dose chemo/radiotherapy in bone marrow transplant recipients. Exp Hematol 27:1460–1466

    Article  PubMed  Google Scholar 

  42. Gao J, Dennis JE, Muzic RF, Lundberg M, Caplan AI (2001) The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs 169:12–20

    Article  PubMed  Google Scholar 

  43. Horwitz EM, Gordon PL, Koo WK, Marx JC, Neel MD, McNall RY et al (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci U S A 99:8932–8937

    Article  PubMed  Google Scholar 

  44. Agematsu K, Nakahori Y (1991) Recipient origin of bone marrow-derived fibroblastic stromal cells during all periods following bone marrow transplantation in humans. Br J Haematol 79:359–365

    PubMed  Google Scholar 

  45. Ikpeazu C, Davidson MK, Halteman D, Browning PJ, Brandt SJ (2000) Donor origin of circulating endothelial progenitors after allogeneic bone marrow transplantation. Biol Blood Marrow Transplant 6:301–308

    PubMed  Google Scholar 

  46. O’Donoghue K, Chan J, de la Fuente J, Kennea N, Sandison A, Anderson JR et al (2004) Microchimerism in female bone marrow and bone decades after fetal mesenchymal stem-cell trafficking in pregnancy. Lancet 364:179–182

    Article  PubMed  Google Scholar 

  47. Cutler C, Giri S, Jeyapalan S, Paniagua D, Viswanathan A, Antin JH (2001) Acute and chronic graft-versus-host disease after allogeneic peripheral-blood stem-cell and bone marrow transplantation: a meta-analysis. J Clin Oncol 19:3685–3691

    PubMed  Google Scholar 

  48. Flowers ME, Parker PM, Johnston LJ, Matos AV, Storer B, Bensinger WI et al (2002) Comparison of chronic graft-versus-host disease after transplantation of peripheral blood stem cells versus bone marrow in allogeneic recipients: long-term follow-up of a randomized trial. Blood 100:415–419

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Bundesministerium für Bildung und Forschung, grant 01GN0125. The authors would like to thank Kathleen Stabla, Dagmar Schwell, Jenny Eckhardt and Sarah Fehl for technical assistance. We also would like to thank Ramona Vietzke, who organised all transplantation data conscientiously and skillfully.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia Brendel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dickhut, A., Schwerdtfeger, R., Kuklick, L. et al. Mesenchymal stem cells obtained after bone marrow transplantation or peripheral blood stem cell transplantation originate from host tissue. Ann Hematol 84, 722–727 (2005). https://doi.org/10.1007/s00277-005-1067-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-005-1067-8

Keywords

Navigation