Skip to main content
Log in

Effect of TNF-α on Raji cells at different cellular levels estimated by various methods

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Tumor necrosis factor (TNF)-α, a pleiotropic cytokine, has been shown to induce diverse and opposite effects on lymphoid malignancy depending on TNF receptor system expression. Based on this, we investigated its in vitro dose- and time-related effect on the malignant B-cell line Raji, derived from Burkitt lymphoma patients, at different intracellular levels. The membrane alteration was estimated by lactate dehydrogenase (LDH) release and by flow cytometry; intracellular metabolic energy by determination of the total intracellular LDH activity; total cytosole protein mass by sulforhodamine B assay; and cell growth by incorporation of [3H]thymidine into DNA. Significant increase of LDH through cell membrane alteration was accompanied by decrease of intracellular metabolized energy and total protein mass. TNF-α at lower concentrations (125 and 250 pg/ml) significantly induced cell proliferation in comparison with 1,000 pg/ml of TNF-α, which induced more cell death. TNF-α induced maximal apoptosis rate up to 30% after 24 h, showing more effects for a necrotic form of cell death. Here we reported opposite and diverse effects of TNF-α at different intracellular levels in Raji cells, when applied in different assays, showing characteristics for every cellular compartment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zheng C, Fischer G, Miller RE, Peschon J, Lynch DH, Lenardo MJ (1995) Induction of apoptosis in mature T cells by tumor necrosis factor. Nature 377:348–352

    Article  PubMed  CAS  Google Scholar 

  2. Ross ME, Caligiuri MA (1997) Cytokine-induced apoptosis of human natural killer cells identifies a novel mechanism to regulate the innate immune response. Blood 89:910–918

    PubMed  CAS  Google Scholar 

  3. Vajant H, Scheurich P (2001) Tumor necrosis factor receptor-associated factor (TRAF2) and its role in TNF signaling. Int J Biochem Cell Biol 33:19–32

    Article  PubMed  Google Scholar 

  4. Trubiani O, Ciancarelli M, Rapino M, Di-Primo R (1995) Cytokines and programmed cell death in Burkitt lymphoma cells. Biochem Mol Biol Int 37:17–24

    PubMed  CAS  Google Scholar 

  5. Jurisic V, Bogdanovic G, Srdic T, Jakimov D, Mrdjanovic J, Baltic M, Baltic VV (2004) Modulation of TNF-α activity in tumor PC cells using anti-CD45 and anti-CD95 monoclonal antibodies. Cancer Lett 214:55–61

    Article  PubMed  CAS  Google Scholar 

  6. Pasparakis M, Alexopoulou L, Episkopou V, Kolllias G (1996) Immune and inflammatory response in TNF-α formation of primary B cell follicles, follicular dendritic networks and germinal centers, and in the maturation of the humoral immune response. J Exp Med 184:1397–1411

    Article  PubMed  CAS  Google Scholar 

  7. Smith CA, Farrah T, Goodwin RG (1994) The TNF receptor superfamily of cellular and viral proteins: activation, costimulation and death. Cell 75:959–962

    Article  Google Scholar 

  8. Haranaka K, Satomi N (1991) Cytotoxic activity of tumor necrosis factor (TNF) on human cancer cells in vitro. Jpn J Exp Med 51:191–194

    Google Scholar 

  9. Yahagisawa K, Watanabe I, Inoue Y, Horiuchi T, Hasegawa H, Yasukawa M, Fujita S (1996) Diverse effects of tumor necrosis factor-alpha on three subclones from human myelomonocytic leukemia cell lime ME-1 exhibiting different differentiation stage. J Interferon Cytokine Res 16:685–693

    PubMed  Google Scholar 

  10. Williams MA, Newland AC, Kelsey M (2000) Cytokine modulated cell-membrane bound tumor necrosis factor expression is a associated with enhanced monocyte-mediated killing of human leukemic targets. Leuk Res 24:317–330

    Article  PubMed  CAS  Google Scholar 

  11. Gruss HJ (1996) Molecular, structural and biological characteristics of the tumor necrosis factor ligand superfamily. Int J Clin Lab Res 26:143–159

    Article  PubMed  CAS  Google Scholar 

  12. Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M, Chin W, Jones J, Woodward A, Le T, Smith C, Schuh JC, Lynch D (1999) Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 5:157–163

    Article  PubMed  CAS  Google Scholar 

  13. Boise LH, Gonzals Garcia M, Postema CE, Ding L, Lindstein T, Turka LA, Mao X, Nunez G, Tompson CB (1993) bcl-x, and bcl-2-related gene that functions as a dominant regulator of apoptosis cell death. Cell 74:597–608

    Article  PubMed  CAS  Google Scholar 

  14. Schmitt E, Steyaert A, Cimoli G, Bertrand R (1998) Bax-α promotes apoptosis induced by cancer chemotherapy and accelerates the activation of caspase 3-like cysteine proteases in p53 double mutant B lymphoma Namalwa cells. Cell Death Differ 5:506–516

    Article  PubMed  CAS  Google Scholar 

  15. Reed JC (1995) Bcl-2 family proteins-regulators of chemoresistance in cancer. Toxicol Lett 3:155–158

    Article  Google Scholar 

  16. Reed JC (1997) Double identity for proteins of the Bcl-2 family. Nature 387:773–776

    Article  PubMed  CAS  Google Scholar 

  17. Pollock PV, Lofthouse EJ, Jupp JO, Stephen BC, Gauld BS, Anderson MH, MacEwan JD (2000) Selective down-regulation of the Gqa/G11a G protein family in tumor necrosis factor-α induced cell death. Mol Cell Biochem 206:67–74

    Article  PubMed  CAS  Google Scholar 

  18. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    Article  PubMed  CAS  Google Scholar 

  19. Faraco PR, Ledgerwood EC, Vandenabeele P, Prins JB, Bradley JR (1999) Tumor necrosis factor induces distinct patterns of caspase activation in WEHI-164 cells associated with apoptosis or necrosis depending on cell cycle stage. Biochem Biophys Res Commun 261:385–392

    Article  PubMed  CAS  Google Scholar 

  20. Sachs L, Lotem J (1993) Control of programmed cell death in normal and leukemic cells: new implication for therapy. Blood 82:25–21

    Google Scholar 

  21. Wyllie AH (1995) Apoptosis: cell death in tissue regulation. J Pathol 153:313–316

    Article  Google Scholar 

  22. Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267:456–1462

    Article  Google Scholar 

  23. Rauthe G, Sistermanns J (1997) Recombinant tumor necrosis factor in the local therapy of malignant pleural effusion. Eur J Cancer 33:226–231

    Article  PubMed  CAS  Google Scholar 

  24. Hieber U, Heim ME (1994) Tumor necrosis factor for the treatment of malignancies. Oncology 51:142–145

    Article  PubMed  CAS  Google Scholar 

  25. Nicholson DW (2000) From bench to clinic with apoptosis-based therapeutic agents. Nature 407:810–816

    Article  PubMed  CAS  Google Scholar 

  26. Jurisic V, Bumbasirevic V, Konjevic G, Djuricic B, Spuzic I (2004) TNF-α induced changes in LDH isotype profile following triggering of apoptosis in PBMC of non-Hodgkin’s lymphoma. Ann Hematol 83:84–91

    Article  PubMed  CAS  Google Scholar 

  27. Lans TE, Bartlett DL, Libutti SK, Gnant MF, Liewehr DJ, Venzon DJ, Turner EM, Alexander HR (2001) Role of tumor necrosis factor on toxicity and cytokine production after isolated hepatic perfusion. Clin Cancer Res 7:784–790

    PubMed  CAS  Google Scholar 

  28. Arnott HC, Scott KA, Moore RJ, Hewer A, Philips HD, Parker P, Balkwill FR, Owens DM (2002) Tumor necrosis factor-alpha mediates tumor promotion via a PKCα- and AP-1-dependent pathway. Oncogene 21:4728–4738

    Article  PubMed  CAS  Google Scholar 

  29. Konjevic G, Jurisic V, Spuzic I (1997) Correction to the original lactate dehydrogenase (LDH) release assay for the evaluation of NK cell cytotoxicity. J Immunol Methods 200:199–201

    Article  PubMed  CAS  Google Scholar 

  30. Jurisic V, Spuzic I, Konjevic G (1999) A comparison of NK cell cytotoxicity with effects of TNF-alfa against K-562 cells, determined by LDH release assay. Cancer Lett 138:67–72

    Article  PubMed  CAS  Google Scholar 

  31. Jurisic V (2003) Estimation of cell membrane alteration after drug treatment by LDH release. Blood 101:2894

    Article  PubMed  CAS  Google Scholar 

  32. Jurisic V, Konjevic G, Banicevic B, Djuricicic B, Spuzic I (2000) Different alteration in lactate dehydrogenase activity and profile of peripheral blood mononuclear cells in Hodgkins and non-Hodgkin’s lymphomas. Eur J Haematol 64:259–266

    Article  PubMed  CAS  Google Scholar 

  33. Kubota T, Takahara T, Nagata M, Furukawa T, Kase S, Tanino H, Ishibiki K, Kitajima M (1993) Colorimetric chemosensitivity testing using sulphorhodamine B. J Surg Oncol 52:83–88

    Article  PubMed  CAS  Google Scholar 

  34. Yoshida N, Ishii E, Mohri S, Nagumo F, Yoshidomi S, Miyazaki S (1999) Suppression of growth and dissemination in human pre-B leukemia cells by tumor necrosis factor-α in Scid mice. Leuk Lymphoma 33:107–118

    PubMed  CAS  Google Scholar 

  35. Di-Pietro R, Rana R, Vitale M, Centurione MA, Stuppia L, Centurione L, Santavenere E (1997) TNF-alpha-induced apoptosis in Daudi cells: multiparametric analysis. Cytokine 9:463–470

    Article  PubMed  CAS  Google Scholar 

  36. Wissing D, Mouritzen H, Egeblad M, Poirier GG, Jaattela M (1997) Involvement of caspase-dependent activation of cytosolic phospholipase A2 in tumor necrosis factor-induced apoptosis. Proc Natl Acad Sci U S A 94:5073–5077

    Article  PubMed  CAS  Google Scholar 

  37. Lobner D (2000) Comparison of the LDH and MTT assays for quantifying cell death: validity for neuronal apoptosis? J Neurosci Methods 15:147–152

    Article  Google Scholar 

  38. Wilkins RC, Kutzner BC, Truong M, Sanchez-Dardon J, McLean RN (2002) Analysis of radiation-induced apoptosis in human lymphocytes: flow cytometry using Annexin V and propidium iodide versus the neutral comet assay. Cytometry 48:14–19

    Article  PubMed  CAS  Google Scholar 

  39. Leist M, Ganter F, Kunstle G, Bohlinger I, Tiegs G, Bluethmann H, Wendel A (1996) The 55-KD tumor necrosis factor receptor and CD95 independently signal murine hepatocyte apoptosis and subsequent liver failure. Mol Med 2:109–124

    PubMed  CAS  Google Scholar 

  40. Chen W, Wang HG, Srinivasula SM, Alnemri ES, Cooper NR (1999) B-cell apoptosis triggered by antigen receptor ligation proceeds via a novel caspase-dependent pathway. J Immunol 163:2489–2491

    Google Scholar 

  41. Grell M, Zimmermann G, Gottfried E, Chen CM, Grunwald U, Huang DC, Wu-Lee YH, Durkop H, Engelmann H, Scheuich P, Wajant H (1999) Induction of the cell death by tumor necrosis factor (TNF) receptor 2, CD40 and CD30: a role for TNF-R1 activation by endogenous membrane-anchored TNF. EMBO J 18:3034–3039

    Article  PubMed  CAS  Google Scholar 

  42. Voelkel-Jonson C, Entingh AJ, Wold SMW (1995) Activation of intracellular proteases is an early event in TNF-induced apoptosis. Immunology 154:1707–1716

    Google Scholar 

  43. Okazaki T, Kondo T, Kitano T, Tashima M (1998) Diversity and complexity of ceramide signalling in apoptosis. Cell Signal 10:685–692

    Article  PubMed  CAS  Google Scholar 

  44. Porter GA (1999) Protein translocation in apoptosis. Trends Cell Biol 9:394–401

    Article  PubMed  CAS  Google Scholar 

  45. Haggins CF (1999) Membrane permeability transporters and channels: from disease to structure and back. Curr Opin Cell Biol 11:495–499

    Article  Google Scholar 

  46. Johrer K, Janke K, Krugmann J, Fiegle M, Greil R (2004) Transendothelial migration of myeloma cells is increased by tumor necrosis factor (TNF-alpha) via TNF receptor 2 and autocrine up regulation of MCP-1. Clin Cancer Res 10:1901–1910

    Article  PubMed  Google Scholar 

  47. Pan LX, Xu JN, Isaacsons PG (1991) Cellular H and M type lactate dehydrogenase (LDH) isoenzymes and tumor diagnostics: an immunohistochemical assessment. J Pathol 163:53–60

    Article  PubMed  CAS  Google Scholar 

  48. Marjanovic S, Skog S, Heiden T, Tribukait B, Nelson BD (1991) Expression of glycolitic enzymes in activated human peripheral lymphocytes: cell cycle analysis using flow cytometry. Exp Cell Res 193:425–431

    Article  PubMed  CAS  Google Scholar 

  49. Wolberg P, Nelson BD (1992) Regulation of the expression lactate dehydrogenase isoenzymes in human lymphocytes. Mol Cell Biochem 110:161–164

    Article  PubMed  Google Scholar 

  50. Weidmann E, Brieger J, Jahn B, Hoelzer D, Bergmann L, Mitrou PS (1995) Lactate dehydrogenase-release assay: a reliable, non-radioactive technique for analysis of cytotoxic lymphocyte-mediated lytic activity against blast from acute myelocytic leukemia. Ann Hematol 70:153–158

    Article  PubMed  CAS  Google Scholar 

  51. Jurisic V, Kraguljac N, Konjevic G, Spuzic I (2005) TNF-α induced changes in cell membrane antigen expression on K-562 cells associated with increased lactate dehydrogenase (LDH) release. Neoplasma 52:25–31

    PubMed  CAS  Google Scholar 

  52. Nehar D, Mauduit C, Boussouar F, Benahmed M (1997) Tumor necrosis factor alpha stimulated lactate production is linked to lactate dehydrogenase A expression and activity increase in porcine cultured Sertoli cells. Endocrinology 138:1964–1971

    Article  PubMed  CAS  Google Scholar 

  53. Fujishiro Y, Kishi H, Matsuda T, Fuse H, Murguci A (2000) Lactate dehydrogenase A-dependent surface expression of immature thymocyte antigen-1: an implication for novel trafficking function of lactate dehydrogenase-A during T cell development. Eur J Immunol 30:516–524

    Article  PubMed  CAS  Google Scholar 

  54. Jurisic V, Colovic M (2002) Correlation of sera TNF-α with percentage of bone marrow plasma cells, LDH, β-2 microglobulin and clinical stage in multiple myeloma. Med Oncol 19:133–139

    Article  PubMed  CAS  Google Scholar 

  55. Aubry JP, Blaecke A, Leoanet-Henchoz S, Jeanin P, Herbault N, Caron G, Moine V, Bonnefoy JY (1999) Annexin V used for measuring apoptosis in the early events of cellular cytotoxicity. Cytometry 37:197–204

    Article  PubMed  CAS  Google Scholar 

  56. Prieto A, Diaz D, Barcenilla H, Garcia-Suarez J, Reyes E, Monserrat J, Antonio ES, Melero D, de la Hera A, Orfao A, Alvarez-Mon M (2000) Apoptotic rate: a new indicator for the quantification of the incidence of apoptosis in cell cultures. Cytometry 48:185–193

    Article  CAS  Google Scholar 

  57. Kumamura S, Ishikura H, Tsumura H, Iwata Y, Endo J, Kobayashi S (1996) c-Myc and Bcl-2 protein expression during the induction of apoptosis and differentiation in TNF-α treated HL-60 cells. Leuk Lymphoma 23:383–394

    Article  PubMed  Google Scholar 

  58. Kuroki J, Hirokava A, Kitabayashi M (1996) Cell-permeable ceramide inhibits the growth of B lymphoma Raji cells lacking TNF-α receptors by inducing G0/G1 arrest but not apoptosis: a new mode for dissecting cell-cycle arrest and apoptosis. Leukemia 10:1950–1958

    PubMed  CAS  Google Scholar 

  59. Genestier M, Revillard JP, Flacher M, Rouault JP, Bonnefoy-Berard N (1995) Tumor necrosis factor-alpha up-regulates Bcl-2 expression and decreases calcium-dependent apoptosis in human B cell lines. Int Immunol 7:533–540

    Article  PubMed  CAS  Google Scholar 

  60. Vander-Haiden MG, Thompson CB (1999) Bcl-2 proteins: regulators of apoptosis or of mitochondrial homeostasis? Nat Cell Biol 1:209–216

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by a grant from the Serbian Ministry of Science, Technology and Development. We thank Dr. Haral Wajant, Germany, for the TNF-α.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Jurisic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jurisic, V., Bogdanovic, G., Kojic, V. et al. Effect of TNF-α on Raji cells at different cellular levels estimated by various methods. Ann Hematol 85, 86–94 (2006). https://doi.org/10.1007/s00277-005-0010-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-005-0010-3

Keywords

Navigation