Skip to main content

Advertisement

Log in

Microenvironment-driven changes in the expression profile of hematopoietic cobblestone area-forming cells

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Studies with ex vivo cultures of bone marrow have indicated the importance of the adherent layer as a primary reservoir of the most primitive hematopoietic stem cells, from which derivative stem cells and more differentiated progenitors are continuously generated. We used the Affymetrix GeneChip to analyze the mRNA expressions between bone marrow-derived hematopoietic progenitor cells in the cobblestone areas (CA) and the free-floating cells released from the CA formations. Mouse bone marrow hematopoietic progenitor cell line FDCP-Mix and S17 stromal cells were used in this study. Of the 12,000 genes on the chip, only 29 showed more than fivefold higher in CAFC; and for cells in the supernatant, only 55 showed fivefold higher expressions than in the cobblestone area-forming cells (CAFC). The hematopoietic cells in CAFC expressed genes associated with homing, adhesion, and suppression of differentiation, while the free-floating hematopoietic cells showed mature lineage markers and differentiation-specific genes. This confirmed the more primitive nature of the hematopoietic cells in the adherent layer. Of interest in the findings were the discoveries of many secreted and surface protein expressions in CA hematopoietic cells. This may imply interactions among the hematopoietic cells, stromal cells, and the extracellular matrix in CA, which drive the growth, maturation, and differentiation of the hematopoietic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2 A, B
Fig. 3

Similar content being viewed by others

References

  1. Morrison SJ, Shah NM, Anderson DJ (1997) Regulatory mechanisms in stem cell biology. Cell 88:287–298

    CAS  PubMed  Google Scholar 

  2. Fukushima N, Ohkawa H (1995) Hematopoietic stem cells and microenvironment: the proliferation and differentiation of stromal cells. Crit Rev Oncol Hematol 20:255–270

    CAS  PubMed  Google Scholar 

  3. Rubinstein P, Carrier C, Scaradavou A, Kurtzberg J, Adamson J, Migliaccio AR, Berkowitz RL, Cabbad M, Dobrila NL, Taylor PE, Rosenfield RE, Stevens CE (1998) Outcome among 562 recipients of placental-blood transplants from unrelated donors. N Engl J Med 339:1565–1577

    CAS  PubMed  Google Scholar 

  4. Lundell BI, Vredenburgh JJ, Tyer C, DeSombre K, Smith AK (1998) Ex vivo expansion of bone marrow from breast cancer patients: reduction in tumor cell content through passive purging. Bone Marrow Transplant 22:153–159

    CAS  PubMed  Google Scholar 

  5. Dexter TM, Heyworth CM, Spooncer E, Ponting ILO (1990) The role of growth factors in self-renewal and differentiation of haemopoietic stem cells. Philos Trans R Soc Lond B Biol Sci 327:85–98

    CAS  PubMed  Google Scholar 

  6. Gan OI, Murdoch B, Larochelle A, Dick JE (1997) Differential maintenance of primitive human SCID-repopulating cells, clonogenic progenitors and long term culture-initiating cells after incubation on human bone marrow stromal cells. Blood 90:641–650

    CAS  PubMed  Google Scholar 

  7. Verfaillie CM (2001) Ex vivo expansion of hematopoietic stem cells. In: Zon LI (ed) Hematopoiesis. A developmental approach. Oxford University Press, New York, pp 119–129

  8. Breems DA, Blokland EA, Neben S, Ploemacher RE (1994) Frequency analysis of human primitive hematopoietic stem cell subsets using a cobblestone area forming cell assay. Leukemia 8:1095–1104

    CAS  PubMed  Google Scholar 

  9. Ploemacher RE, Van der Sluijs JP, Van Beurden CAJ, Baert MRM, Chan PL (1991) Use of limiting dilution type long-term marrow cultures in frequency analysis of marrow-repopulating and spleen colony-forming hematopoietic stem cells in the mouse. Blood 78:2527–2533

    CAS  PubMed  Google Scholar 

  10. Li J, Sensebé L, Hervé P, Charbord P (1997) Non-transformed colony-derived stromal cell lines from normal human marrows. III. The maintenance of hematopoiesis from CD34+ cell populations. Exp Hematol 25:582–591

    CAS  PubMed  Google Scholar 

  11. Spooncer E, Heyworth CM, Dunn A, Dexter TM (1986) Self-renewal and differentiation of interleukin-3-dependent multipotent stem cells are modulated by stromal cells and serum factors. Differentiation 31:111–118

    CAS  PubMed  Google Scholar 

  12. Collins LS, Dorshkind K (1987) Astromal cell line from myeloid long-term bone marrow culturescan support myelopoiesis and B lymphopoiesis. J Immunol 138:1082–1087

    CAS  PubMed  Google Scholar 

  13. Haughn L, Hawley RG, Morrison DK, Von Boehmer H, Hockenbery DM (2003) BCL-2 and BCL-XL restrict lineage choice during hematopoietic differentiation. J Biol Chem 278:25158–25165 (epub Apr 28)

    CAS  PubMed  Google Scholar 

  14. Spanakis E, Brouty-Boye D (1994) Evaluation of quantitative variation in gene expression. Nucleic Acids Res 22:799–806

    CAS  PubMed  Google Scholar 

  15. Morison IM, Eccles MR, Reeve AE (2000) Imprinting of insulin-like growth factor 2 is modulated during hematopoiesis. Blood 96:3023–3028

    CAS  PubMed  Google Scholar 

  16. Long E, Huynh HT, Zhao X (1998) Involvement of insulin-like growth factor-1 and its binding proteins in proliferation and differentiation of murine bone marrow-derived macrophage precursors. Endocrine 9:185–192

    CAS  PubMed  Google Scholar 

  17. Chen T, Zimmermann W, Parker J, Chen I, Maeda A, Bolland, S (2001) Biliary glycoprotein (BGPa, CD66a, CEACAM1) mediates inhibitory signals. J Leukoc Biol 70:335–340

    CAS  PubMed  Google Scholar 

  18. Netelenbos T, van den Born J, Kessler FL, Zweegman S, Merle PA, van Oostveen JW, Zwaginga JJ, Huijgens PC, Drager AM (2003) Proteoglycans on bone marrow endothelial cells bind and present SDF-1 towards hematopoietic progenitor cells. Leukemia 17:175–184

    CAS  PubMed  Google Scholar 

  19. Petrenko O, Beavis A, Klaine M, Kittappa R, Godin I, Lemischka IR (1999) The molecular characterization of the fetal stem cell marker AA4. Immunity 10:691–700

    CAS  PubMed  Google Scholar 

  20. Dai XM, Ryan GR, Hapel AJ, Dominguez MG, Russell RG, Kapp S, Sylvestre V, Stanley ER (2002) Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 99:111–120

    CAS  PubMed  Google Scholar 

  21. Xu XX, Yang W, Jackowski S, Rock CO (1995) Cloning of a novel phosphoprotein regulated by colony-stimulating factor 1 shares a domain with the Drosophila disabled gene product. J Biol Chem 270:14184–14191

    CAS  PubMed  Google Scholar 

  22. Clay FJ, McEwen SJ, Bertoncello I, Wilks AF, Dunn AR (1993) Identification and cloning of a protein kinase-encoding mouse gene, Plk, related to the polo gene of Drosophila. Proc Natl Acad Sci U S A 90:4882–4886

    CAS  PubMed  Google Scholar 

  23. Takaki S, Tezuka Y, Sauer K, Kubo C, Kwon SM, Armstead E, Nakao K, Katsuki M, Perlmutter RM, Takatsu K (2003) Impaired lymphopoiesis and altered B cell subpopulations in mice overexpressing Lnk adaptor protein. J Immunol 170:703–710

    CAS  PubMed  Google Scholar 

  24. Olsson M, Durbeej M, Ekblom P, Hjalt T (2002) Nulp1, a novel basic helix-loop-helix protein expressed broadly during early embryonic organogenesis and prominently in developing dorsal root ganglia. Cell Tissue Res 308:361–370

    CAS  PubMed  Google Scholar 

  25. Pierantoni GM, Fedele M, Pentimalli F, Benvenuto G, Pero R, Viglietto G, Santoro M, Chiariotti L, Fusco A (2001) High mobility group I (Y) proteins bind HIPK2, a serine-threonine kinase protein which inhibits cell growth. Oncogene 20:6132–6141

    CAS  PubMed  Google Scholar 

  26. Fleming TJ, O’h Uigin C, Malek TR (1993) Characterization of two novel Ly-6 genes. Protein sequence and potential structural similarity to alpha-bungarotoxin and other neurotoxins. J Immunol 150:5379–5390

    CAS  PubMed  Google Scholar 

  27. Bozic CR, Gerard NP, von Uexkull-Guldenband C, Kolakowski LF Jr, Conklyn MJ, Breslow R, Showel HJ, Gerard C (1994) The murine interleukin 8 type B receptor homologue and its ligands. Expression and biological characterization. J Biol Chem 269:29355–29358

    CAS  PubMed  Google Scholar 

  28. Castrillo JM, Theill LE, Karin M (1991) Function of the homeodomain protein GHF1 in pituitary cell proliferation. Science 253:197–199

    CAS  PubMed  Google Scholar 

  29. Gascoigne NRJ, Munir Alam S (1999) Allelic exclusion of the T cell receptor α-chain: developmental regulation of a post-translational event. Semin Immunol 11:337–347

    CAS  PubMed  Google Scholar 

  30. Krucken J, Schmitt-Wrede HP, Markmann-Mulisch U, Wunderlich F (1997) Novel gene expressed in spleen cells mediating acquired testosterone-resistant immunity to Plasmodium chabaudi malaria. Biochem Biophys Res Commun 230:167–170

    CAS  PubMed  Google Scholar 

  31. Chantry D, Vojtek A, Kashishian A, Holtzman DA, Wood C, Gray PW, Cooper JA, Hoekstra MF (1997) p110delta, a novel phosphatidylinositol 3-kinase catalytic subunit that associates with p85 and is expressed predominantly in leukocytes. J Biol Chem 272:19236–19241

    Article  CAS  PubMed  Google Scholar 

  32. Kashii Y, Uchida M, Kirito K, Tanaka M, Nishijima K, Toshima M, Ando T, Koizumi K, Endoh T, Sawada K, Momoi M, Miura Y, Ozawa K, Komatsu N (2000) A member of Forkhead family transcription factor, FKHRL1, is one of the downstream molecules of phosphatidylinositol 3-kinase-Akt activation pathway in erythropoietin signal transduction. Blood 96:941–949

    CAS  PubMed  Google Scholar 

  33. Zhou Q, Zhao J, Wiedmer T, Sims PJ (2002) Normal hemostasis but defective hematopoietic response to growth factors in mice deficient in phospholipid scramblase 1. Blood 99:4030–4038

    CAS  PubMed  Google Scholar 

  34. Christoph T, Rickert R, Rajewsky K (1994) M17: a novel gene expressed in germinal centers. Int Immunol 6:1203–1211

    CAS  PubMed  Google Scholar 

  35. Zhang Y, Iratni R, Erdjument-Bromage H, Tempst P, Reinberg D (1997) Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell 89:357–364

    CAS  PubMed  Google Scholar 

  36. Constam DB, Tobler AR, Rensing-Ehl A, Kembler I, Hersh LB, Fontana A (1995) Puromycin-sensitive aminopeptidase. Sequence analysis, expression and functional characterization. J Biol Chem 270:26931–26939

    CAS  PubMed  Google Scholar 

  37. Winkler KE, Swanson KI, Kornbluth S, Means AR (2000) Requirement of the prolyl isomerase Pin1 for the replication checkpoint. Science 287:1644–1647

    Article  CAS  PubMed  Google Scholar 

  38. Uhler J, Garbern J, Yang L, Kamholz J, Mellerick DM (2002) Nk6, a novel Drosophila homeobox gene regulated by vnd. Mech Dev 116:105–116

    CAS  PubMed  Google Scholar 

  39. Alberta JA, Springett GM, Rayburn H, Natoli TA, Loring J, Kreidberg JA, Housman, D (2003) Role of the WT1 tumor suppressor in murine hematopoiesis. Blood 101:2570–2574

    CAS  PubMed  Google Scholar 

  40. Philips RL, Ernst RE, Brunk B, Ivanova N, Mahan MA, Deanehan JK, Moore KA, Christian Overton G, Lemischka IR (2000) The genetic program of hematopoietic stem cells. Science 288:1635–1640

    PubMed  Google Scholar 

  41. Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR (2002) A stem cell molecular signature. Science 298:601–604

    Article  CAS  PubMed  Google Scholar 

  42. Ma X, Husain T, Peng H, Lin S, Mironenko O, Maun N, Johnson S, Tuck D, Berliner N, Krause DS, Perkins AS (2002) Development of murine hematopoietic progenitor complementary DNA microarray using a substracted complementary DNA library. Blood 100:833–844

    CAS  PubMed  Google Scholar 

  43. Park I-K, He Y, Lin F, Laerum OD, Tian Q, Bumgarner R, Klug CA, Li K, Kuhr C, Doyle MJ, Xie T, Schummer M, Sun Y, Goldsmith A, Clarke MF, Weissman IL, Hood L, Li L (2002) Differential gene expression profiling of adult murine hematopoietic stem cells. Blood 99:488–498

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author (M. L. Choong) wishes to thank the Singapore Agency for Science, Technology and Research (A*STAR) for awarding an International Fellowship, and the Bioprocessing Technology Centre for further financial support that enabled a post-doctoral stay at the Lodish Lab, Whitehead Institute. The Affymetrix GeneChips were provided by the Functional Genomics Program of the Whitehead Institute Center for Genome Research and the Consortium Partners. The excellent technical help of Amanda Heard (Whitehead Institute) and Christine Ladd (Whitehead Genome Center) is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Choong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choong, M.L., Luo, B. & Lodish, H.F. Microenvironment-driven changes in the expression profile of hematopoietic cobblestone area-forming cells. Ann Hematol 83, 160–169 (2004). https://doi.org/10.1007/s00277-003-0797-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-003-0797-8

Keywords

Navigation