Skip to main content

Advertisement

Log in

Blood leukocyte subsets and cytokine profile after autologous peripheral blood stem cell transplantation

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

High-dose chemotherapy with autologous peripheral blood stem cell transplantation (PBSCT) includes the risk of infectious complications due to neutropenia and therapy-induced immune deviation. In order to understand early immune recovery in this situation, we analyzed the distribution of cell subsets by flow cytometry and we measured cytokine production in a whole blood assay stimulated with lipopolysaccharide (LPS) in order to induce monocyte (MO) activation in 43 patients with solid tumors or lymphoma treated with two cycles of high-dose chemotherapy and PBSCT. Blood was collected at the following time points: before start of mobilization chemotherapy, before and after high-dose chemotherapy, and 10 and 30 days after PBSCT. In the lymphocyte compartment, we found a depletion of B cells and naive T cells and a transitory reduction of natural killer (NK) cells, whereas MO and neutrophils recovered rapidly. However, during early recovery, HLA-DR expression on MO and the percentage of CD16+ MO was considerably reduced. Production of proinflammatory cytokines interleukin (IL)-1, IL-6, and tumor necrosis factor (TNF)-alpha upon LPS stimulation was severely impaired directly after chemotherapy and unexpectedly remained low during early recovery of myeloid cells, whereas production of IL-1RA was enhanced, indicating a shift of immune competent cells to an anti-inflammatory or anergic state early after PBSCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3. A, B
Fig. 4.

Similar content being viewed by others

References

  1. Arroyo JL, Gutierrez NC, Garcia-Marcos MA, Villarroel R, Galindo P, Fernandez ME, Izarra A, del Canizo MC, Caballero MD, San Miguel JF (2000) Monocyte counts: an early index of haemopoietic reconstitution after peripheral blood stem cell transplantation. Br J Haematol 111:987–989

    PubMed  Google Scholar 

  2. Avigan D, Wu Z, Joyce R, Elias A, Richardson P, McDermott D, Levine J, Kennedy L, Giallombardo N, Hurley D, Gong J, Kufe D (2000) Immune reconstitution following high-dose chemotherapy with stem cell rescue in patients with advanced breast cancer. Bone Marrow Transplant 26:169–176

    CAS  PubMed  Google Scholar 

  3. De Ruysscher D, Waer M, Vandeputte M, Aerts R, Vantongelen K, van der SE (1992) Changes of lymphocyte subsets after local irradiation for early stage breast cancer and seminoma testis: long-term increase of activated (HLA- DR+) T cells and decrease of "naive" (CD4-CD45R) T lymphocytes. Eur J Cancer 28A:1729–1734

    PubMed  Google Scholar 

  4. Faist E, Mewes A, Strasser T, Walz A, Alkan S, Baker C, Ertel W, Heberer G (1988) Alteration of monocyte function following major injury. Arch Surg 123:287–292

    PubMed  Google Scholar 

  5. Gallo O, Gori AM, Attanasio M, Martini F, Giusti B, Boddi M, Gallina E, Fini O, Abbate R (1993) Interleukin-1 beta and interleukin-6 release by peripheral blood monocytes in head and neck cancer. Br J Cancer 68:465–468

    PubMed  Google Scholar 

  6. Goh K, Reddy MM (1976) B and T lymphocytes in man. II. Circulating B and T lymphocytes in cancer patients. J Med 7:297–305

    PubMed  Google Scholar 

  7. Hamann D, Baars PA, Rep MH, Hooibrink B, Kerkhof-Garde SR, Klein MR, van Lier RA (1997) Phenotypic and functional separation of memory and effector human CD8+ T cells. J Exp Med 186:1407–1418

    Article  CAS  PubMed  Google Scholar 

  8. Hamann D, Roos MT, van Lier RA (1999) Faces and phases of human CD8 T-cell development. Immunol Today 20:177–180

    Google Scholar 

  9. Kern F, Ode HS, Vogt K, Hoflich C, Reinke P, Volk HD (1996) The enigma of CD57+CD28- T cell expansion—anergy or activation? Clin Exp Immunol 104:180–184

    PubMed  Google Scholar 

  10. Kerrigan DP, Castillo A, Foucar K, Townsend K, Neidhart J (1989) Peripheral blood morphologic changes after high-dose antineoplastic chemotherapy and recombinant human granulocyte colony-stimulating factor administration. Am J Clin Pathol 92:280–285

    PubMed  Google Scholar 

  11. Koehne G, Zeller W, Stockschlaeder M, Zander AR (1997) Phenotype of lymphocyte subsets after autologous peripheral blood stem cell transplantation. Bone Marrow Transplant 19:149–156

    Google Scholar 

  12. Krause SW, Gnad M, Reichle A, Andreesen R (2002) Adoptive therapy with monocyte-derived macrophages in the setting of high-dose chemotherapy and peripheral blood stem cell transplantation. Br J Haematol 116:920–922

    PubMed  Google Scholar 

  13. Mackall CL, Fleisher TA, Brown MR, Andrich MP, Chen CC, Feuerstein IM, Magrath IT, Wexler LH, Dimitrov DS, Gress RE (1997) Distinctions between CD8+ and CD4+ T-cell regenerative pathways result in prolonged T-cell subset imbalance after intensive chemotherapy. Blood 89:3700–3707

    CAS  PubMed  Google Scholar 

  14. Mackall CL, Fleisher TA, Brown MR, Magrath IT, Shad AT, Horowitz ME, Wexler LH, Adde MA, McClure LL, Gress RE (1994) Lymphocyte depletion during treatment with intensive chemotherapy for cancer. Blood 84:2221–2228

    PubMed  Google Scholar 

  15. Mackall CL, Gress RE (1997) Pathways of T-cell regeneration in mice and humans: implications for bone marrow transplantation and immunotherapy. Immunol Rev 157:61–72

    Google Scholar 

  16. Mackall CL, Stein D, Fleisher TA, Brown MR, Hakim FT, Bare CV, Leitman SF, Read EJ, Carter CS, Wexler LH, Gress RE (2000) Prolonged CD4 depletion after sequential autologous peripheral blood progenitor cell infusions in children and young adults. Blood 96:754–762

    CAS  PubMed  Google Scholar 

  17. McMillan DC, Fyffe GD, Wotherspoon HA, Cooke TG, McArdle CS (1997) Prospective study of circulating T-lymphocyte subpopulations and disease progression in colorectal cancer. Dis Colon Rectum 40:1068–1071

    CAS  PubMed  Google Scholar 

  18. Olweus J, BitMansour A, Warnke R, Thompson PA, Carballido J, Picker LJ, Lund JF (1997) Dendritic cell ontogeny: a human dendritic cell lineage of myeloid origin. Proc Natl Acad Sci U S A 94:12551–12556

    PubMed  Google Scholar 

  19. Pechumer H, Leinisch E, Bender-Gotze C, Ziegler-Heitbrock HW (1991) Recovery of monocytes after bone marrow transplantation—rapid reappearance of tumor necrosis factor alpha and interleukin 6 production. Transplantation 52:698–704

    PubMed  Google Scholar 

  20. Pollack S, Micali A, Kinne DW, Enker WE, Geller N, Oettgen HF, Hoffmann MK (1983) Endotoxin-induced in vitro release of interleukin-1 by cancer patients' monocytes: relation to stage of disease. Int J Cancer 32:733–736

    PubMed  Google Scholar 

  21. Rothe G, Gabriel H, Kovacs E, Klucken J, Stohr J, Kindermann W, Schmitz G (1996) Peripheral blood mononuclear phagocyte subpopulations as cellular markers in hypercholesterolemia. Arterioscler Thromb Vasc Biol 16:1437–1447

    PubMed  Google Scholar 

  22. Saleh MN, Goldman SJ, LoBuglio AF, Beall AC, Sabio H, McCord MC, Minasian L, Alpaugh RK, Weiner LM, Munn DH (1995) CD16+ monocytes in patients with cancer: spontaneous elevation and pharmacologic induction by recombinant human macrophage colony-stimulating factor. Blood 85:2910–2917

    PubMed  Google Scholar 

  23. Schinkel C, Licht K, Zedler S, Schinkel S, Fraunberger P, Fuchs D, Neugebauer E, Kreuzer E, Faist E (2001) Interferon-gamma modifies cytokine release in vitro by monocytes from surgical patients. J Trauma 50:321–327

    PubMed  Google Scholar 

  24. Shevach EM (2001) Certified professionals: CD4(+)CD25(+) suppressor T cells. J Exp Med 193:F41-F46

    PubMed  Google Scholar 

  25. Speiser DE, Migliaccio M, Pittet MJ, Valmori D, Lienard D, Lejeune F, Reichenbach P, Guillaume P, Luscher I, Cerottini JC, Romero P (2001) Human CD8(+) T cells expressing HLA-DR and CD28 show telomerase activity and are distinct from cytolytic effector T cells. Eur J Immunol 31:459–466

    PubMed  Google Scholar 

  26. Thomas R, Lipsky PE (1994) Human peripheral blood dendritic cell subsets. Isolation and characterization of precursor and mature antigen-presenting cells. J Immunol 153:4016–4028

    PubMed  Google Scholar 

  27. Van den Hove LE, Vandenberghe P, Van Gool SW, Ceuppens JL, Demuynck H, Verhoef GE, Boogaerts MA (1998) Peripheral blood lymphocyte subset shifts in patients with untreated hematological tumors: evidence for systemic activation of the T cell compartment. Leuk Res 22:175–184

    PubMed  Google Scholar 

  28. Volk HD, Reinke P, Krausch D, Zuckermann H, Asadullah K, Muller JM, Docke WD, Kox WJ (1996) Monocyte deactivation—rationale for a new therapeutic strategy in sepsis. Intensive Care Med 22 [Suppl 4]:S474-S481

  29. Waller EK, Rosenthal H, Jones TW, Peel J, Lonial S, Langston A, Redei I, Jurickova I, Boyer MW (2001) Larger numbers of CD4 (bright) dendritic cells in donor bone marrow are associated with increased relapse after allogeneic bone marrow transplantation. Blood 97:2948–2956

    PubMed  Google Scholar 

  30. Wang EC, Borysiewicz LK (1995) The role of CD8+, CD57+ cells in human cytomegalovirus and other viral infections. Scand J Infect Dis 99 [Suppl]:69–77

    Google Scholar 

  31. Ziegler Heitbrock HW, Fingerle G, Strobel M, Schraut W, Stelter F, Schutt C, Passlick B, Pforte A (1993) The novel subset of CD14+/CD16+ blood monocytes exhibits features of tissue macrophages. Eur J Immunol 23:2053–2058

    PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully thank M. Laumer for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. W. Krause.

Additional information

This work was supported by Deutsche Krebshilfe (German Cancer Aid)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krause, S.W., Rothe, G., Gnad, M. et al. Blood leukocyte subsets and cytokine profile after autologous peripheral blood stem cell transplantation. Ann Hematol 82, 628–636 (2003). https://doi.org/10.1007/s00277-003-0716-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-003-0716-z

Keywords

Navigation