Skip to main content

Advertisement

Log in

The left-sided aortic arch variants: prevalence meta-analysis of imaging studies

  • Review
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

Purpose

To estimate the prevalence of the left-sided aortic arch (LSAA) variants, and the effect of possible moderators on variants’ detection.

Methods

A systematic online literature search was conducted. The pooled prevalence with 95% confidence intervals was estimated for the typical and atypical branching patterns to compare the overall proportions of different variants. Meta-regression analyses were performed to investigate the effect of the subjects’ gender and geographical region, and the multidetector computed tomography (MDCT) scanner’s technology on the estimated prevalence.

Results

In total, 18,075 cases from 23 imaging studies were included and 33 different LSAA variants were detected. The estimated heterogeneity was statistically significant. Based on the estimated prevalence, approximately 77% of the population is expected to have the typical branching anatomy with sequence brachiocephalic trunk—left common carotid artery—left subclavian artery, and 23% variant branching patterns. Approximately 71%, 23%, 2%, and 0.1% of the atypical populations are expected to have two, four, three, and five emerging branches, respectively. The meta-regression analyses showed that the number of detector rows of the MDCT scanner, and the subjects’ geographical region are statistically significant moderators of the estimated prevalence.

Conclusion

The current findings indicate that the prevalence of the LSAA variant branching anatomy is significantly affected by the subjects’ geographical region and the MDCT scanner’s technological improvement, with the advanced scanners to facilitate the detection of the aortic arch variants. However, due to the heterogeneity among studies, further research is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AA:

Aortic arch

ALSA:

Aberrant left subclavian artery

ARCCA:

Aberrant right common carotid artery

ARSA:

Aberrant right subclavian artery

BCCT:

Brachiocephalico-carotid trunk

BCT:

Brachiocephalic trunk

BiCT:

Bicarotid trunk

CO:

Common origin

CT:

Common trunk

DSA:

Digital subtraction angiography

IMA:

Thyroidea ima artery

LCCA:

Left common carotid artery

LExCA:

Left external carotid artery

LInCA:

Left internal carotid artery

LSA:

Left subclavian artery

LSAA:

Left-sided aortic arch

LVA:

Left vertebral artery

MDCT:

Multidetector computed tomography

MDCTA:

Multidetector computed tomographic angiography

MRA:

Magnetic resonance angiography

RCCA:

Right common carotid artery

RSA:

Right subclavian artery

RVA:

Right vertebral artery

VST:

Vertebro-subclavian trunk

References

  1. Aboulhoda BE, Ahmed RK, Awad AS (2019) Clinically-relevant morphometric parameters and anatomical variations of the aortic arch branching pattern. Surg Radiol Anat 41(7):731–744. https://doi.org/10.1007/s00276-019-02215-w

    Article  PubMed  Google Scholar 

  2. Acar M, Ulusoy M, Zararsiz I, Efe D (2013) Anatomical variations in the branching of human aortic arch. Biomed Res 24(4):531–535

    Google Scholar 

  3. Alur İ, Alihanoğlu Yİ, Güneş T, Çıtışlı V (2015) An assessment of the clinical significance of aortic arc variations. Turk Gogus Kalp Dama 23:804–805

    Article  Google Scholar 

  4. Balduzzi S, Rücker G, Schwarzer G (2019) How to perform a meta-analysis with R: a practical tutorial. Evid Based Ment Health 22(4):153–160

    Article  Google Scholar 

  5. Barendregt JJ, Doi SA, Lee YY, Norman RE, Vos T (2013) Meta-analysis of prevalence. J Epidemiol Commun Health 67(11):974–978. https://doi.org/10.1136/jech-2013-203104

    Article  Google Scholar 

  6. Batra P, Bigoni B, Manning J, Aberle DR, Brown K, Hart E, Goldin J (2000) Pitfalls in the diagnosis of thoracic aortic dissection at CT angiography. Radiographics 20(2):309–320

    Article  CAS  Google Scholar 

  7. Böhning D, Holling H, Böhning W, Sangnawakij P (2021) Investigating heterogeneity in meta-analysis of studies with rare events. Metron 79(3):259–272

    Article  Google Scholar 

  8. Bolatli G, Ulusoy M, Koplay M, Zararsız İ (2018) Studying With Multidetector Computed Tomography Angiography Techniques of Aortic Arch Branching Variation.

  9. Boyacı N, Dokumacı DŞ, Karakaş E, Yıldız S, Cece H, Kocarslan A, Aydın MS (2015) Multidetector computed tomography evaluation of aortic arch and branching variants. Turk J Thorac Cardiovasc Surg. https://doi.org/10.5606/tgkdc.dergisi.2015.10290

    Article  Google Scholar 

  10. Carpenter JP, Holland GA, Golden MA, Barker CF, Lexa FJ, Gilfeather M, Schnall MD (1997) Magnetic resonance angiography of the aortic arch. J Vasc Surg 25(1):145–151

    Article  CAS  Google Scholar 

  11. Celikyay ZR, Koner AE, Celikyay F, Deniz C, Acu B, Firat MM (2013) Frequency and imaging findings of variations in human aortic arch anatomy based on multidetector computed tomography data. Clin Imaging 37(6):1011–1019. https://doi.org/10.1016/j.clinimag.2013.07.008

    Article  PubMed  Google Scholar 

  12. Chen X, Qu Y-j, Peng Z-y, Lu J-g, Ma X-j (2013) Diagnosis of congenital aortic arch anomalies in Chinese children by multi-detector computed tomography angiography. J Huazhong Univ Sci Technol [Med Sci] 33(3):447–451

    Article  Google Scholar 

  13. Choi WS, Kim MU (2021) Variations of bronchial artery origin in 600 patients: systematic analysis with multidetector computed tomography and digital subtraction angiography. Medicine 100(22):e26001. https://doi.org/10.1097/md.0000000000026001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dumfarth J, Chou AS, Ziganshin BA, Bhandari R, Peterss S, Tranquilli M, Mojibian H, Fang H, Rizzo JA, Elefteriades JA (2015) Atypical aortic arch branching variants: a novel marker for thoracic aortic disease. J Thorac Cardiovasc Surg 149(6):1586–1592

    Article  Google Scholar 

  15. Erdoes G, Demertzis S, Basciani R, Szuecs-Farkas Z, Carrel T, Eberle B (2010) The potentially beneficial role of an aortic arch anatomical variant. Can J Anesth 57(10):952–954

    Article  Google Scholar 

  16. Ergun E, Simsek B, Kosar PN, Yilmaz BK, Turgut AT (2013) Anatomical variations in branching pattern of arcus aorta: 64-slice CTA appearance. Surg Radiol Anat 35(6):503–509. https://doi.org/10.1007/s00276-012-1063-3

    Article  PubMed  Google Scholar 

  17. Faggioli G, Ferri M, Freyrie A, Gargiulo M, Fratesi F, Rossi C, Manzoli L, Stella A (2007) Aortic arch anomalies are associated with increased risk of neurological events in carotid stent procedures. Eur J Vasc Endovasc Surg 33(4):436–441

    Article  CAS  Google Scholar 

  18. Fu R, Gartlehner G, Grant M, Shamliyan T, Sedrakyan A, Wilt TJ, Griffith L, Oremus M, Raina P, Ismaila A (2011) Conducting quantitative synthesis when comparing medical interventions: AHRQ and the effective health care program. J Clin Epidemiol 64(11):1187–1197

    Article  Google Scholar 

  19. Ginat DT, Gupta R (2014) Advances in computed tomography imaging technology. Annu Rev Biomed Eng 16:431–453. https://doi.org/10.1146/annurev-bioeng-121813-113601

    Article  CAS  PubMed  Google Scholar 

  20. Goldman LW (2008) Principles of CT: multislice CT. J Nucl Med Technol 36(2):57–68. https://doi.org/10.2967/jnmt.107.044826 (quiz 75-6)

    Article  PubMed  Google Scholar 

  21. Harley H (1959) The development and anomalies of the aortic arch and its branches. With the report of a case of right cervical aortic arch and intrathoracic vascular ring. J B Surg 46(200):561–573

    Article  CAS  Google Scholar 

  22. Henjes CR, Nolte I, Wefstaedt P (2011) Multidetector-row computed tomography of thoracic aortic anomalies in dogs and cats: patent ductus arteriosus and vascular rings. BMC Vet Res 7(1):1–9

    Article  Google Scholar 

  23. Henry BM, Tomaszewski KA, Ramakrishnan PK, Roy J, Vikse J, Loukas M, Tubbs RS, Walocha JA (2017) Development of the anatomical quality assessment (AQUA) tool for the quality assessment of anatomical studies included in meta-analyses and systematic reviews. Clin Anat 30(1):6–13. https://doi.org/10.1002/ca.22799

    Article  PubMed  Google Scholar 

  24. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327(7414):557–560. https://doi.org/10.1136/bmj.327.7414.557

    Article  PubMed  PubMed Central  Google Scholar 

  25. Huang F, Chen Q, Lai Q-q, Huang W-h, Wu H, Li W-c (2016) Preoperative evaluation value of aortic arch lesions by multidetector computed tomography angiography in type A aortic dissection. Medicine 95(39):e4984

    Article  Google Scholar 

  26. Huapaya JA, Chavez-Trujillo K, Trelles M, Duenas Carbajal R, Ferrandiz Espadin R (2015) Anatomic variations of the branches of the aortic arch in a Peruvian population. Medwave 15(6):e6194. https://doi.org/10.5867/medwave.2015.06.6194

    Article  PubMed  Google Scholar 

  27. Hurlock GS, Higashino H, Mochizuki T (2009) History of cardiac computed tomography: single to 320-detector row multislice computed tomography. Int J Cardiovasc Imaging 25(1):31–42. https://doi.org/10.1007/s10554-008-9408-z

    Article  PubMed  Google Scholar 

  28. Jakanani GC, Adair W (2010) Frequency of variations in aortic arch anatomy depicted on multidetector CT. Clin Radiol 65(6):481–487. https://doi.org/10.1016/j.crad.2010.02.003

    Article  CAS  PubMed  Google Scholar 

  29. Karacan A, Turkvatan A, Karacan K (2014) Anatomical variations of aortic arch branching: evaluation with computed tomographic angiography. Cardiol Young 24(3):485–493. https://doi.org/10.1017/S1047951113000656

    Article  PubMed  Google Scholar 

  30. Kondori BJ, Asadi MH, Rahimian E, Tahsini MR (2016) Anatomical variations in aortic arch branching pattern. Arch Iran Med 19(1):72–74

    Google Scholar 

  31. Lale P, Toprak U, Yagız G, Kaya T, Uyanık SA (2014) Variations in the branching pattern of the aortic arch detected with computerized tomography angiography. Adv Radiol. https://doi.org/10.1155/2014/969728

    Article  Google Scholar 

  32. Müller M, Schmitz BL, Pauls S, Schick M, Röhrer S, Kapapa T, Schlötzer W (2011) Variations of the aortic arch–a study on the most common branching patterns. Acta Radiol 52(7):738–742

    Article  Google Scholar 

  33. Makhanya N, Mamogale T, Khan N (2004) Variants of the left aortic arch branches. SA J Radiol 8(4):10

    Article  Google Scholar 

  34. Marrocco-Trischitta MM, Alaidroos M, Romarowski RM, Milani V, Ambrogi F, Secchi F, Glauber M, Nano G (2020) Aortic arch variant with a common origin of the innominate and left carotid artery as a determinant of thoracic aortic disease: a systematic review and meta-analysis. Eur J Cardiothorac Surg 57(3):422–427

    PubMed  Google Scholar 

  35. Michimoto K, Takenaga S, Matsui Y, Enoki K, Nozawa Y, Higuchi T, Kano R, Kimura T (2020) Ectopic origin of bronchial arteries: still a potential pitfall in embolization. Surg Radiol Anat 42(11):1293–1298. https://doi.org/10.1007/s00276-020-02495-7

    Article  PubMed  Google Scholar 

  36. Mustafa AG, Allouh MZ, Ghaida JH, Al-Omari MH, Mahmoud WA (2017) Branching patterns of the aortic arch: a computed tomography angiography-based study. Surg Radiol Anat 39(3):235–242. https://doi.org/10.1007/s00276-016-1720-z

    Article  PubMed  Google Scholar 

  37. Natsis K, Piagkou M, Lazaridis N, Kalamatianos T, Chytas D, Manatakis D, Anastasopoulos N, Loukas M (2021) A systematic classification of the left-sided aortic arch variants based on cadaveric studies’ prevalence. Surg Radiol Anat 43(3):327–345. https://doi.org/10.1007/s00276-020-02625-1

    Article  CAS  PubMed  Google Scholar 

  38. Natsis KI, Tsitouridis IA, Didagelos MV, Fillipidis AA, Vlasis KG, Tsikaras PD (2009) Anatomical variations in the branches of the human aortic arch in 633 angiographies: clinical significance and literature review. Surg Radiol Anat 31(5):319–323. https://doi.org/10.1007/s00276-008-0442-2

    Article  PubMed  Google Scholar 

  39. Piyavisetpat N, Thaksinawisut P, Tumkosit M (2011) Aortic arch branches’ variations detected on chest CT. Asian Biomed 5(6):817–824

    Google Scholar 

  40. Popieluszko P, Henry BM, Sanna B, Hsieh WC, Saganiak K, Pekala PA, Walocha JA, Tomaszewski KA (2018) A systematic review and meta-analysis of variations in branching patterns of the adult aortic arch. J Vasc Surg 68(1):298-306.e10. https://doi.org/10.1016/j.jvs.2017.06.097

    Article  PubMed  Google Scholar 

  41. Prada G, Granados AM, Calle JS, Rodríguez SY, Baena GP (2016) Anatomic variations of the aortic arch depicted on 444 CT angiographies. Eur J Anat 20(2):137–141

    Google Scholar 

  42. Prince M, Narasimham D, Jacoby W, Williams D, Cho K, Marx M, Deeb G (1996) Three-dimensional gadolinium-enhanced MR angiography of the thoracic aorta. AJR Am J Roentgenol 166(6):1387–1397

    Article  CAS  Google Scholar 

  43. R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  44. Ramos-Duran L, Nance JW Jr, Schoepf UJ, Henzler T, Apfaltrer P, Hlavacek AM (2012) Developmental aortic arch anomalies in infants and children assessed with CT angiography. Am J Roentgenol 198(5):W466–W474

    Article  Google Scholar 

  45. Recto C, Boddi M, Branca JJV, Morucci G, Pacini A, Gulisano M, Paternostro F (2019) Aortic arch branching pattern variation: its incidence on a 20030 cases review. Ital J Anat Embryol 124(1):5–15

    Google Scholar 

  46. Reppert MK, Lundgren EC, Dibos LA, Deshmukh N (1993) Variations in aortic arch branch vessel anatomy as seen by aortography. Vasc Surg 27(2):89–93

    Article  Google Scholar 

  47. Tapia-Nañez M, Landeros-Garcia G, Sada-Treviño M, Pinales-Razo R, Quiroga-Garza A, Fernandez-Rodarte B, Elizondo-Omaña R, Guzman-Lopez S (2021) Morphometry of the aortic arch and its branches. A computed tomography angiography-based study. Folia Morphol 80(3):575–582

    Article  Google Scholar 

  48. Tapia GP, Zhu X, Xu J, Liang P, Su G, Liu H, Liu Y, Shu L, Liu S, Huang C (2015) Incidence of branching patterns variations of the arch in aortic dissection in Chinese patients. Medicine 94(17):e795. https://doi.org/10.1097/MD.0000000000000795

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tawfik AM, Sobh DM, Ashamallah GA, Batouty NM (2019) Prevalence and types of aortic arch variants and anomalies in congenital heart diseases. Acad Radiol 26(7):930–936

    Article  Google Scholar 

  50. Vučurević G, Marinković S, Puškaš L, Kovačević I, Tanasković S, Radak D, Ilić A (2013) Anatomy and radiology of the variations of aortic arch branches in 1266 patients. Folia Morphol 72(2):113–122

    Article  Google Scholar 

  51. Wang L, Zhang J, Xin S (2016) Morphologic features of the aortic arch and its branches in the adult Chinese population. J Vasc Surg 64(6):1602–08 e1. https://doi.org/10.1016/j.jvs.2016.05.092

    Article  PubMed  Google Scholar 

  52. Yener Ö, Türkvatan A, Yüce G, Yener A (2015) The normal anatomy and variations of the bronchial arteries: evaluation with multidetector computed tomography. Can Assoc Radiol J 66(1):44–52. https://doi.org/10.1016/j.carj.2014.07.001

    Article  PubMed  Google Scholar 

  53. Zappalá M, Lightbourne S, Heneghan NR (2021) The relationship between thoracic kyphosis and age, and normative values across age groups: a systematic review of healthy adults. J Orthop Surg Res 16(1):1–18

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

CT: literature search, manuscript writing, quality assessment, and statistical meta-analysis; NL: literature search, data extraction and language editing of the manuscript; MP: literature search, manuscript planning, data collection and extraction and manuscript editing; FD: manuscript editing and supervision; IA: performance of schematic drawings; PA: manuscript editing and KN: proposal of the classification pattern, manuscript editing and supervision.

Corresponding author

Correspondence to Nikolaos Lazaridis.

Ethics declarations

Conflict of interest

All authors state that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsiouris, C., Lazaridis, N., Piagkou, M. et al. The left-sided aortic arch variants: prevalence meta-analysis of imaging studies. Surg Radiol Anat 44, 673–688 (2022). https://doi.org/10.1007/s00276-022-02945-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-022-02945-4

Keywords

Navigation