Skip to main content

Advertisement

Log in

The parietal foramen anatomy: studies using dry skulls, cadaver and in vivo MRI

  • Original Article
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

Objective

The aim of this study was to describe the anatomical features encountered in the parietal foramen in a series of 178 human bones and 123 head MRI examinations. A cadaveric specimen was also dissected to demonstrate the trajectory of a superficial scalp vein through the parietal foramen as far as the dura mater. A literature review was performed regarding prevalence of parietal foramen in different populations.

Methods

Totally, 178 paired adult bones were used to investigate the presence, shape and number of the parietal foramina. In addition, 123 brain MRI examinations were also studied.

Results

The parietal foramina were encountered in 75/89 (84.3%) skulls [32/38 (84.2%) in women vs. 43/51 (84.3%) in men, p > 0.05]. The parietal foramen was present bilaterally in 44.73% of females and 54.9% of males. Regarding unilaterality of the parietal foramen, a right or left laterality was observed in female 21% right versus 18% left; and 16% versus 14% (left) in males (p > 0.05). The accessory parietal foramen was present in the right parietal in 2.6% and in 7.9% on the left side of the females, while 5.9% and 3.9% of the males on the right or left sides, respectively. The parietal foramina located in the proximity of the sagittal suture (male 7.1 ± 2.5 mm vs. female, 7.4 ± 2.7 mm). There was a positive correlation between the right and left parietal foramina regarding the distance from the median line. The distance from a foramen to the contralateral one was 16 ± 4 mm in men and 18 ± 5 mm in women, respectively (p > 0.05).

Conclusion

No major differences were encountered between sexes regarding the anatomical features of parietal foramen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baker MA (1972) Influence of the carotid rete on brain temperature in cats exposed to hot environments. J Physiol 220(3):711–728. https://doi.org/10.1113/jphysiol.1972.sp009731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Benoit J, Manger PR, Rubidge BS (2016) Palaeoneurological clues to the evolution of defining mammalian soft tissue traits. Sci Rep 6:1–10. https://doi.org/10.1038/srep25604

    Article  CAS  Google Scholar 

  3. Berry AC (1975) Factors affecting the incidence of non-metrical skeletal variants. J Anat 120(3):519–535

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Boyd G (1930) The emissary foramina of the cranium in man and the anthropoids. J Anat 65(1):108–121

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Burstein R, Blake P, Schain A, Perry C (2017) Extracranial origin of headache. Curr Opin Neurol 30:263–271. https://doi.org/10.1097/WCO.0000000000000437

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cabanac M, Brinnel H (1985) Blood flow in the emissary veins of the human head during hyperthermia. Eur J Appl Physiol Occup Physiol 54:172–176. https://doi.org/10.1007/BF02335925

    Article  CAS  PubMed  Google Scholar 

  7. Chapot R, Saint-Maurice J-P, Narata AP et al (2007) Transcranial puncture through the parietal and mastoid foramina for the treatment of dural fistulas. Report of four cases. J Neurosurg 106(5):912–915. https://doi.org/10.3171/jns.2007.106.5.912

    Article  PubMed  Google Scholar 

  8. Collipal E, Silva H, Quintas F, Martínez C, del Sol M (2009) Estudio Morfométrico del Foramen Parietal. Int J Morphol 27(2):481–484. https://doi.org/10.4067/S0717-95022009000200028

    Article  Google Scholar 

  9. Curé JK, Van Tassel P, Smith MT (1994) Normal and variant anatomy of the dural venous sinuses. Semin Ultrasound, CT, MRI. 15(6):499–519. https://doi.org/10.1016/S0887-2171(05)80019-8

    Article  Google Scholar 

  10. Currarino G (1976) Normal variants and congenital anomalies in the region of the obelion. Am J Roentgenol 127(3):487–494. https://doi.org/10.2214/ajr.127.3.487

    Article  CAS  Google Scholar 

  11. De Vis JB, Lu H, Ravi H, Hendrikse J, Liu P (2017) Spatial distribution of flow and oxygenation in the cerebral venous drainage system. J Magn Reson Imaging 47(4):1091–1098. https://doi.org/10.1002/jmri.25833

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fein JM, Brinker RA (1972) Evolution and significance of giant parietal foramina: report of five cases in one family. J Neurosurg 37(4):487–492. https://doi.org/10.3171/jns.1972.37.4.0487

    Article  CAS  PubMed  Google Scholar 

  13. Freire AR, Rossi AC, Souza de Oliveira VC, Prado FB, Ferreira Caria PH, Botacin PR (2013) Emissary foramens of the human skull: anatomical characteristics and its relations with clinical neurosurgery. Int J Morphol 31(1):287–292. https://doi.org/10.4067/S0717-95022013000100045

    Article  Google Scholar 

  14. Gibelli D, Borlando A, Barni L et al (2019) Anatomy of infraorbital foramen: influence of sex, side, and cranium size. J Craniofac Surg 30(4):1284–1288. https://doi.org/10.1097/SCS.0000000000005254

    Article  PubMed  Google Scholar 

  15. Har-Shai Y, Fukuta K, Collares KMV et al (1992) The vascular anatomy of the galeal flap in the interparietal and midline regions. Neurosurgery 89:64–69

    CAS  Google Scholar 

  16. Herweh C, Nordlohne S, Sykora M, Uhlmann L, Bendszus M, Steiner T (2017) Climatic and seasonal circumstances of hypertensive intracerebral hemorrhage in a worldwide cohort. Stroke 48(12):3384–3386. https://doi.org/10.1161/STROKEAHA.117.018779

    Article  PubMed  Google Scholar 

  17. Irawati N, Vaish R, Chaukar D, Deshmukh A, D’Cruz A (2016) The tubercle of Zuckerkandl: an important landmark revisited. Indian J Surg Oncol 7(3):312–315. https://doi.org/10.1007/s13193-015-0482-0

    Article  PubMed  Google Scholar 

  18. Irmak MK, Korkmaz A, Erogul O (2004) Selective brain cooling seems to be a mechanism leading to human craniofacial diversity observed in different geographical regions. Med Hypotheses 63(6):974–979. https://doi.org/10.1016/j.mehy.2004.05.003

    Article  CAS  PubMed  Google Scholar 

  19. James YE, Doleagbenou A, Kassegne I et al (2014) Zuckerkandl’s tubercle: incidence and relationship with the inferior laryngeal nerve. Morphologie 98(323):171–175. https://doi.org/10.1016/j.morpho.2014.07.002

    Article  CAS  PubMed  Google Scholar 

  20. Kosaras B, Jakubowski M, Kainz V, Burstein R (2009) Sensory innervation of the calvarial bones of the mouse. J Comp Neurol 515:331–348. https://doi.org/10.1002/cne.22049

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lacković Z, Boris F, Matak I, Zsuzsanna H (2015) Activity of botulinum toxin type A in cranial dura: implications for treatment of migraine and other headaches. Br J Pharmacol 173:279–291. https://doi.org/10.1111/bph.13366

    Article  CAS  PubMed Central  Google Scholar 

  22. Li H, Ruan J, Xie Z, Wang H, Liu W (2007) Investigation of the critical geometric characteristics of living human skulls utilising medical image analysis techniques. 2(4):345–367. https://doi.org/10.1504/IJVS.2007.016747

    Article  Google Scholar 

  23. Louis RG, Loukas M, Wartmann CT et al (2009) Clinical anatomy of the mastoid and occipital emissary veins in a large series. Surg Radiol Anat 31(2):139–144. https://doi.org/10.1007/s00276-008-0423-5

    Article  PubMed  Google Scholar 

  24. Mariak Z, Bondyra Z, Piekarska M (1993) The temperature within the circle of Willis versus tympanic temperature in resting normothermic humans. Eur J Appl Physiol Occup Physiol 66(6):518–520. https://doi.org/10.1007/BF00634302

    Article  CAS  PubMed  Google Scholar 

  25. Mortazavi MM, Shane Tubbs R, Riech S et al (2012) Anatomy and pathology of the cranial emissary veins: a review with surgical implications. Neurosurgery 70(5):1312–1318. https://doi.org/10.1227/NEU.0b013e31824388f8

    Article  PubMed  Google Scholar 

  26. Murlimanju BV, Chettiar GK, Prameela MD et al (2014) Mastoid emissary foramina: an anatomical morphological study with discussion on their evolutionary and clinical implications. Anat Cell Biol. 47(3):202. https://doi.org/10.5115/acb.2014.47.3.202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Murlimanju BV, Saralaya VV, Somesh MS et al (2015) Morphology and topography of the parietal emissary foramina in South Indians: an anatomical study. Anat Cell Biol 48(4):292. https://doi.org/10.5115/acb.2015.48.4.292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nascimento Correia Lima N, Fortes de Oliveira O, Sassi C, Picapedra A, Francesquini L, Daruge E (2012) Sex determination by linear measurements of palatal bones and skull base. J Forensic Odontostomatol 30(1):38–44

    Google Scholar 

  29. Nawashiro H, Nawashiro T, Nawashiro A (2019) Subcutaneous Extension of Parasagittal Atypical Meningioma Through Parietal Foramen. World Neurosurg 125:104–105. https://doi.org/10.1016/j.wneu.2019.01.185

    Article  PubMed  Google Scholar 

  30. Okudera T, Huang Yun Peng, Ohta T et al (1994) Development of posterior fossa dural sinuses, emissary veins, and jugular bulb: morphological and radiologic study. Am J Neuroradiol 15(10):1871–1883

    CAS  PubMed  Google Scholar 

  31. Reis CVC, Deshmukh V, Zabramski JM et al (2007) Anatomy of the mastoid emissary vein and venous system of the posterior neck region: neurosurgical implications. Neurosurgery 61(5):193–201. https://doi.org/10.1227/01.neu.0000303217.53607.d9

    Article  PubMed  Google Scholar 

  32. Salehi G, Sarraf P, Fatehi F (2016) Cerebral venous sinus thrombosis may follow a seasonal pattern. J Stroke Cerebrovasc Dis 25(12):2838–2843. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.07.045

    Article  PubMed  Google Scholar 

  33. Shapiro R (1972) Anomalous parietal sutures and the bipartite parietal bone. Am J Roentgenol Radium Ther Nucl Med 115(3):569–577. https://doi.org/10.2214/ajr.115.3.569

    Article  CAS  PubMed  Google Scholar 

  34. Singh R, Tubbs RS (2017) Effect of cervical siphon of external and internal carotid arteries. J Craniofac Surg 28(7):1857–1860. https://doi.org/10.1097/SCS.0000000000003658

    Article  PubMed  Google Scholar 

  35. Sinhorini PA, Costa IAP, Lopez-Capp TT, Biazevic MGH, de Paiva LAS (2019) Comparative analysis of four morphometric methods for sex estimation: a study conducted on human skulls. Leg Med 39:29–34. https://doi.org/10.1016/j.legalmed.2019.06.001

    Article  Google Scholar 

  36. Skrzat J, Brzegowy P, Walocha J, Wojciechowski W (2004) Age dependent changes of the diploe in the human skull. Folia Morphol 63(1):67–70

    Google Scholar 

  37. Urban JE, Weaver AA, Lillie EM, Maldjian JA, Whitlow CT, Stitzel JD (2016) Evaluation of morphological changes in the adult skull with age and sex. J Anat 229(6):838–846. https://doi.org/10.1111/joa.12247

    Article  PubMed  Google Scholar 

  38. Vijaywargiya M, Deopujari R, Athavale AS (2017) Anatomical study of petrous and cavernous parts of internal carotid artery. Anat Cell Biol 50(3):163–179. https://doi.org/10.5115/acb.2017.50.3.163

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wu YQ, Badano JL, McCaskill C, Vogel H, Potocki L, Shaffer LG (2000) Haploinsufficiency of ALX4 as a potential cause of parietal foramina in the 11p11.2 contiguous gene-deletion syndrome. Am J Hum Genet 67(5):1327–1332. https://doi.org/10.1016/S0002-9297(07)62963-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wysocki J, Reymond J, Skarzyński H, Wróbel B (2006) The size of selected human skull foramina in relation to skull capacity. Folia Morphol 65(4):301–308

    CAS  Google Scholar 

  41. Yoshioka N, Rhoton AL, Abe H (2006) Scalp to meningeal arterial anastomosis in the parietal foramen. Neurosurgery 58:123–126. https://doi.org/10.1227/01.NEU.0000193516.46104.27

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the Human Anatomy Laboratory of the Federal University of Pernambuco, which provided materials that were essential to carry out the study.

Funding

The authors declare that no financial support was received for the research, authorship and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

MRSF, CPM and MMV conceived and designed the analysis; MRSF, AMBQL, CPM and MMV collected the data; APOG, PTMBQL and AMBQL contributed data or analysis tools; MRSF, PTMBQL and MMV performed the analysis; MRSF and MMV wrote the paper.

Corresponding author

Correspondence to Maria Rosana de Souza Ferreira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All stages of this study were carried out in accordance with the guidelines of the National Research Ethics Commission and were approved by the Research Ethics Committee involving human beings at the Federal University of Pernambuco through the protocol CAAE: 79464917.6.0000.5208.

Informed consent

The study data were previously approved by the ethics and research committee of the Federal University of Pernambuco.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza Ferreira, M.R., Galvão, A.P.O., de Queiroz Lima, P.T.M.B. et al. The parietal foramen anatomy: studies using dry skulls, cadaver and in vivo MRI. Surg Radiol Anat 43, 1159–1168 (2021). https://doi.org/10.1007/s00276-020-02650-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-020-02650-0

Keywords

Navigation