Skip to main content
Log in

Correlation between notch width index assessed via magnetic resonance imaging and risk of anterior cruciate ligament injury: an updated meta-analysis

  • Review
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

Purpose

To analyze the correlation between notch width index (NWI) and/or femoral intercondylar notch width (NW) assessed by magnetic resonance imaging (MRI) and risk of anterior cruciate ligament (ACL) injury.

Methods

We searched the PubMed, Embase, China National Knowledge Infrastructure and Wanfang databases for literature reporting a correlation between ACL injury and NWI and/or NW. Subgroup analyses were stratified by ethnicity, sex and control source. The weighted mean difference (WMD) and 95% confidence intervals (95% CIs) were calculated for the ACL injury cases and controls using random- or fixed-effects models. Begg’s test and sensitivity analyses were applied to assess publication bias and stability of the results, respectively.

Results

Twenty-eight eligible studies were finally enrolled. The NW was significantly narrowerin the ACL injury cases than in the control cases (pooled WMD, − 1.88 [95% CI, − 2.43 to − 1.32]). The results were similar when stratified by ethnicity and sex. Similarly, the NWI was lower in ACL injury cases than in the controls. Asian populations presented similar results when stratified by ethnicity, among the self-control group when stratified by control source, and among men when stratified by sex. No publication bias was identified; however, the sensitivity analysis suggested unstable results in the NWI subgroup analysis.

Conclusions

The current meta-analysis evidenced that the NW assessed via MRI was significantly smaller in ACL injury cases than in the controls. The NWI was lower in ACL injury cases among men. Prevention strategies for ACL injury could be applied for people with intercondylar notch stenosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data and material are available in this submission.

References

  1. Acevedo RJ, Rivera-Vega A, Miranda G, Micheo W (2014) Anterior cruciate ligament injury: identification of risk factors and prevention strategies. Current Sports Med Rep 13:186–191

    Google Scholar 

  2. Alentorn-Geli E, Myer GD, Silvers HJ, Samitier G, Romero D, Lazaro-Haro C, Cugat R (2009) Prevention of non-contact anterior cruciate ligament injuries in soccer players. Part 1: mechanisms of injury and underlying risk factors. Knee Surg Sports Traumatol Arthrosc 17:705–729

    PubMed  Google Scholar 

  3. Alentorn-Geli E, Pelfort X, Mingo F, Lizano-Diez X, Leal-Blanquet J, Torres-Claramunt R, Hinarejos P, Puig-Verdie L, Monllau JC (2015) An evaluation of the association between radiographic intercondylar notch narrowing and anterior cruciate ligament injury in men: the notch angle is a better parameter than notch width. Arthrosc J Arthrosc Relat Surg 31:2004–2013

    Google Scholar 

  4. Anderson AF, Anderson CN, Gorman TM, Cross MB, Spindler KP (2007) Radiographic measurements of the intercondylar notch: are they accurate? Arthrosc J Arthrosc Relat Surg 23:261–268

    Google Scholar 

  5. Bouras T, Fennema P, Burke S, Bosman H (2018) Stenotic intercondylar notch type is correlated with anterior cruciate ligament injury in female patients using magnetic resonance imaging. Knee Surg Sports Traumatol Arthrosc 26:1252–1257

    PubMed  Google Scholar 

  6. Chen C, Ma Y, Geng B, Tan X, Zhang B, Jayswal CK, Khan MS, Meng H, Ding N, Jiang J, Wu M, Wang J, Xia Y (2016) Intercondylar notch stenosis of knee osteoarthritis and relationship between stenosis and osteoarthritis complicated with anterior cruciate ligament injury: a study in MRI. Medicine 95:e3439

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Dienst M, Schneider G, Altmeyer K, Voelkering K, Georg T, Kramann B, Kohn D (2007) Correlation of intercondylar notch cross sections to the ACL size: a high resolution MR tomographic in vivo analysis. Arch Orthop Trauma Surg 127:253–260

    PubMed  Google Scholar 

  8. Domzalski M, Grzelak P, Gabos P (2010) Risk factors for anterior cruciate ligament injury in skeletally immature patients: analysis of intercondylar notch width using magnetic resonance imaging. Int Orthop 34:703–707

    PubMed  PubMed Central  Google Scholar 

  9. Estes K, Cheruvu B, Lawless M, Laughlin R, Goswami T (2015) Risk assessment for anterior cruciate ligament injury. Arch Orthop Trauma Surg 135:1437–1443

    CAS  PubMed  Google Scholar 

  10. Evans KN, Kilcoyne KG, Dickens JF, Rue JP, Giuliani J, Gwinn D, Wilckens JH (2012) Predisposing risk factors for non-contact ACL injuries in military subjects. Knee Surg Sports Traumatol Arthrosc 20:1554–1559

    PubMed  Google Scholar 

  11. Everhart JS, Flanigan DC, Chaudhari AM (2014) Anteromedial ridging of the femoral intercondylar notch: an anatomic study of 170 archival skeletal specimens. Knee Surg Sports Traumatol Arthrosc 22:80–87

    PubMed  Google Scholar 

  12. Everhart JS, Flanigan DC, Simon RA, Chaudhari AM (2010) Association of noncontact anterior cruciate ligament injury with presence and thickness of a bony ridge on the anteromedial aspect of the femoral intercondylar notch. Am J Sports Med 38:1667–1673

    PubMed  Google Scholar 

  13. Fernandez-Jaen T, Lopez-Alcorocho JM, Rodriguez-Inigo E, Castellan F, Hernandez JC, Guillen-Garcia P (2015) The importance of the intercondylar notch in anterior cruciate ligament tears. Orthop J Sports Med 3:2325967115597882

    PubMed  PubMed Central  Google Scholar 

  14. Feucht MJ, Mauro CS, Brucker PU, Imhoff AB, Hinterwimmer S (2013) The role of the tibial slope in sustaining and treating anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 21:134–145

    PubMed  Google Scholar 

  15. Fung DT, Hendrix RW, Koh JL, Zhang LQ (2007) ACL impingement prediction based on MRI scans of individual knees. Clin Orthop Relat Res 460:210–218

    PubMed  Google Scholar 

  16. Geng B, Wang J, Ma JL, Zhang B, Jiang J, Tan XY, Xia YY (2016) Narrow intercondylar notch and anterior cruciate ligament injury in female nonathletes with knee osteoarthritis aged 41–65 years in plateau region. Chin Med J 129:2540–2545

    PubMed  PubMed Central  Google Scholar 

  17. Gormeli CA, Gormeli G, Ozturk BY, Ozdemir Z, Kahraman AS, Yildirim O, Gozukarab H (2015) The effect of the intercondylar notch width index on anterior cruciate ligament injuries: a study on groups with unilateral and bilateral ACL injury. Acta Orthop Belg 81:240–244

    PubMed  Google Scholar 

  18. Hoteya K, Kato Y, Motojima S, Ingham SJ, Horaguchi T, Saito A, Tokuhashi Y (2011) Association between intercondylar notch narrowing and bilateral anterior cruciate ligament injuries in athletes. Arch Orthop Trauma Surg 131:371–376

    PubMed  Google Scholar 

  19. Huang JM, Hu WJ, Li DC, Zhang Z, Wang HJ, Li YH, Cao JG, Zhao Q, Chen X (2016) Association of anterior cruciate ligament degeneration with medical meniscuss tear and intercondylar notch impingement. Chinese J Rep Reconst Surg 30:1478–1482

    Google Scholar 

  20. Huang M, Li Y, Guo N, Liao C, Yu B (2019) Relationship between intercondylar notch angle and anterior cruciate ligament injury: a magnetic resonance imaging analysis. J Inter Med Res 47:1602–1609

    Google Scholar 

  21. Ireland ML, Ballantyne BT, Little K, McClay IS (2001) A radiographic analysis of the relationship between the size and shape of the intercondylar notch and anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc 9:200–205

    CAS  PubMed  Google Scholar 

  22. K S, Chamala T, Kumar A (2019) Comparison of anatomical risk factors for noncontact anterior cruciate ligament injury using magnetic resonance imaging. J Clinic Orthop Traumatol 10:143–148

    Google Scholar 

  23. LaPrade RF, Burnett QM (1994) Femoral intercondylar notch stenosis and correlation to anterior cruciate ligament: injuries a prospective study. Am J Sports Med 22:198–202

    CAS  PubMed  Google Scholar 

  24. Li H, Wu ZY, Wang DL (2017) Relationship between femoral intercondylar fossa, posterior tibial slope and anterior cruciate ligament injury. Chin J Bone Joint Injury 32:585–588

    Google Scholar 

  25. Li H, Zeng C, Wang Y, Wei J, Yang T, Cui Y, Xie D, Liu H, Lei GH (2018) Association between magnetic resonance imaging-measured intercondylar notch dimensions and anterior cruciate ligament injury: a meta-analysis. Arthrosc J Arthrosc Relat Surg 34:889–900

    Google Scholar 

  26. Li YL (2012) The intercondylar notch characteristics research on the signs of MRI and anterior cruciate ligament rupture. Master's thesis, Taishan Medical University, China

  27. Liao Z, Cui H (2015) MRI measurement and its correlation between the femoral condyle and the femoral condyle after the rupture of the anterior vruciate ligament. Heilongjiang Med J 28:1218–1230

    Google Scholar 

  28. Lombardo S, Sethi PM, Starkey C (2005) Intercondylar notch stenosis is not a risk factor for anterior cruciate ligament tears in professional male basketball players: an 11-year prospective study. Am J Sports Med 33:29–34

    PubMed  Google Scholar 

  29. Miljko M, Grle M, Kozul S, Kolobaric M, Djak I (2012) Intercondylar notch width and inner angle of lateral femoral condyle as the risk factors for anterior cruciate ligament injury in female handball players in Herzegovina. Coll Antropol 36:195–200

    PubMed  Google Scholar 

  30. Muneta T, Takakuda K, Yamamoto H (1997) Intercondylar notch width and its relation to the configuration and cross-sectional area of the anterior cruciate ligament. A cadaveric knee study. Am J Sports Med 25:69–72

    CAS  PubMed  Google Scholar 

  31. Nacey NC, Geeslin MG, Miller GW, Pierce JL (2017) Magnetic resonance imaging of the knee: an overview and update of conventional and state of the art imaging. J Magn Reson Imag 45:1257–1275

    Google Scholar 

  32. Ouyang X, Wang YH, Wang J, Hong SD, Xin F, Wang L, Yang XW, Wang JR, Wang LM, Wei BO, Wang Q, Cui WD, Fu XL (2016) MRI measurement on intercondylar notch after anterior cruciate ligament rupture and its correlation. Exp Ther Med 11:1275–1278

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Park JS, Nam DC, Kim DH, Kim HK, Hwang SC (2012) Measurement of knee morphometrics using MRI: a comparative study between acl-injured and non-injured knees. Knee Surg Relat Res 24:180–185

    PubMed  PubMed Central  Google Scholar 

  34. Parkar AP, Adriaensen ME, Fischer-Bredenbeck C, Inderhaug E, Strand T, Assmus J, Solheim E (2015) Measurements of tunnel placements after anterior cruciate ligament reconstruction–a comparison between CT, radiographs and MRI. Knee 22:574–579

    PubMed  Google Scholar 

  35. Pekala L, Podgorski M, Shukla A, Winnicka M, Biernacka K, Grzelak P (2019) Do variants of the intercondylar notch predispose children to the injury of the anterior cruciate ligament? Clin Anat 32:706–709

    PubMed  Google Scholar 

  36. Rahnemai-Azar AA, Yaseen Z, van Eck CF, Irrgang JJ, Fu FH, Musahl V (2016) Increased lateral tibial plateau slope predisposes male college football players to anterior cruciate ligament injury. J Bone Joint Surg Am 98:1001–1006

    PubMed  Google Scholar 

  37. Shelbourne KD, Davis TJ, Klootwyk TE (1998) The relationship between intercondylar notch width of the femur and the incidence of anterior cruciate ligament tears. a prospective study. Amer J Sports Med 26:402–408

    CAS  Google Scholar 

  38. Simon RA, Everhart JS, Nagaraja HN, Chaudhari AM (2010) A case-control study of anterior cruciate ligament volume, tibial plateau slopes and intercondylar notch dimensions in ACL-injured knees. J Biomech 43:1702–1707

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sonnery-Cottet B, Archbold P, Cucurulo T, Fayard JM, Bortolletto J, Thaunat M, Prost T, Chambat P (2011) The influence of the tibial slope and the size of the intercondylar notch on rupture of the anterior cruciate ligament. J Bone Joint Surg Br 93:1475–1478

    CAS  PubMed  Google Scholar 

  40. Souryal TO, Freeman TR (1993) Intercondylar notch size and anterior cruciate ligament injuries in athletes. a prospective study. Am J Sports Med 21:535–539

    CAS  PubMed  Google Scholar 

  41. Souryal TO, Moore HA, Evans JP (1988) Bilaterality in anterior cruciate ligament injuries: associated intercondylar notch stenosis. Am J Sports Med 16:449–454

    CAS  PubMed  Google Scholar 

  42. Stein V, Li L, Guermazi A, Zhang Y, Kent Kwoh C, Eaton CB, Hunter DJ, Investigators OAI (2010) The relation of femoral notch stenosis to ACL tears in persons with knee osteoarthritis. Osteoarthr Cartil 18:192–199

    CAS  PubMed  Google Scholar 

  43. Stijak L, Herzog RF, Schai P (2008) Is there an influence of the tibial slope of the lateral condyle on the ACL lesion? a case control study. Knee Surg Sports Traumatol 16:112–117

    Google Scholar 

  44. Stijak L, Bumbasirevic M, Kadija M, Stankovic G, Herzog R, Filipovic B (2014) Morphometric parameters as risk factors for anterior cruciate ligament injuries—a MRI case control study. Vojnosanit Pregl 71:271–276

    PubMed  Google Scholar 

  45. Taneja AK, Miranda FC, Demange MK, Prado MP, Santos DCB, Rosemberg LA, Baroni RH (2018) Evaluation of posterior cruciate ligament and intercondylar notch in subjects with anterior cruciate ligament tear: a comparative flexed-knee 3D magnetic resonance imaging study. Arthroscopy J Arthrosc Relat Surg 34:557–565

    Google Scholar 

  46. Teitz CC, Lind BK, Sacks BM (1997) Symmetry of the femoral notch width index. Am J Sports Med 25:687–690

    CAS  PubMed  Google Scholar 

  47. Uhorchak JM, Scoville CR, Williams GN, Arciero RA, St Pierre P, Taylor DC (2003) Risk factors associated with noncontact injury of the anterior cruciate ligament: a prospective four-year evaluation of 859 west point cadets. Am J Sports Med 31:831–842

    PubMed  Google Scholar 

  48. van Diek FM, Wolf MR, Murawski CD, van Eck CF, Fu FH (2014) Knee morphology and risk factors for developing an anterior cruciate ligament rupture: an MRI comparison between ACL-ruptured and non-injured knees. Knee Surg Sports Traumatol Arthrosc 22:987–994

    PubMed  Google Scholar 

  49. van Eck CF, Martins CA, Lorenz SG, Fu FH, Smolinski P (2010) Assessment of correlation between knee notch width index and the three-dimensional notch volume. Knee Surg Sports Traumatol Arthrosc 18:1239–1244

    PubMed  PubMed Central  Google Scholar 

  50. Van Eck CF, Martins CA, Kopf S, Lertwanich P, Fu FH, Tashman S (2011) Correlation between the 2-dimensional notch width and the 3-dimensional notch volume: a cadaveric study. Arthrosc J Arthrosc Relat Surg 27:207–212

    Google Scholar 

  51. Whitney DC, Sturnick DR, Vacek PM, DeSarno MJ, Gardner-Morse M, Tourville TW, Smith HC, Slauterbeck JR, Johnson RJ, Shultz SJ, Hashemi J, Beynnon BD (2014) Relationship between the risk of suffering a first-time noncontact ACL Injury and geometry of the femoral notch and ACL: a prospective cohort study with a nested case-control analysis. Am J Sports Med 42:1796–1805

    PubMed  PubMed Central  Google Scholar 

  52. Wolters F, Vrooijink SH, Van Eck CF, Fu FH (2011) Does notch size predict ACL insertion site size? Knee Surg Sports Traumatol Arthrosc 19(Suppl 1):S17–21

    PubMed  Google Scholar 

  53. Zeng C, Cheng L, Wei J, Gao SG, Yang TB, Luo W, Li YS, Xu M, Lei GH (2014) The influence of the tibial plateau slopes on injury of the anterior cruciate ligament: a meta-analysis. Knee Surg Sports Traumatol Arthrosc 22:53–65

    PubMed  Google Scholar 

  54. Zeng C, Gao SG, Wei J, Yang TB, Cheng L, Luo W, Tu M, Xie Q, Hu Z, Liu PF, Li H, Yang T, Zhou B, Lei GH (2013) The influence of the intercondylar notch dimensions on injury of the anterior cruciate ligament: a meta-analysis. Knee Surg Sports Traumatol Arthrosc 21:804–815

    PubMed  Google Scholar 

  55. Zhang B, Geng B, Tan XY, Chen C, Yang LJ, Wang J, Wang CF, Xia YY (2015) Relationship between first-time noncontact ACL injury and geometry of the femoral intercondylar notch: a highresolution MRI research. Orthopedic J China 23:1888–1892

    Google Scholar 

  56. Zhang C, Zhang X, Fang Z, Wang F, Yuan F, Xie G, Zhao J (2019) The correlation between common 2D femoral notch parameters and 3D notch volume: a retrospective MRI study. BMC Musculoskelet Disord 20:146

    PubMed  PubMed Central  Google Scholar 

  57. Zhang PR, Xu B, Xu HG, Wang R, Zhang HY (2015) Association between intercondylar notch width and noncontact anterior cruciate ligament injury. Chin J Bone Joint Injury 30:1058–1061

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. ZL, CL, LL, and PW prepared the material and collected and analyzed the data. ZL wrote the first draft of the manuscript, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zheng Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Li, C., Li, L. et al. Correlation between notch width index assessed via magnetic resonance imaging and risk of anterior cruciate ligament injury: an updated meta-analysis. Surg Radiol Anat 42, 1209–1217 (2020). https://doi.org/10.1007/s00276-020-02496-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-020-02496-6

Keywords

Navigation