Skip to main content

Anatomical variability of the arcuate fasciculus: a systematical review

Abstract

Purpose

The arcuate fasciculus (AF) is a white matter fibers tract that links the lateral temporal with the frontal cortex. The AF can be divided into three components: two superficial indirect short tracts (anterior and posterior) and one deep direct long tract. Both DTI and white matter dissections studies find differences regarding the anatomy of the AF, especially its cortical connections. This paper aims at providing a comprehensive anatomical classification of the AF, using the terminologia anatomica.

Methods

Articles (n = 478) were obtained from a systematical PRISMA review. Studies which focused on primates, unhealthy subjects, as well as studies without cortical termination description and review articles were excluded from the analysis. One hundred and ten articles were retained for full-text examination, of which 19 finally fulfilled our criteria to be included in this review.

Results

We classified main descriptions and variations of each segment of the AF according to fiber orientation and cortical connections. Three types of connections were depicted for each segment of the AF. Concerning the anterior segment, most of the frontal fibers (59.35%) ran from the ventral portion of the precentral gyrus and the posterior part of the pars opercularis, to the supramarginal gyrus (85.0%). Main fibers of the posterior segment of the AF ran from the posterior portion of the middle temporal gyrus (100%) to the angular gyrus (92.0%). In main descriptions of the long segment of the AF, fibers ran from both the ventral portion of the precentral gyrus and posterior part of the pars opercularis (63.9%) to the middle and inferior temporal gyrus (60.3%). Minor subtypes were described in detail in the article.

Conclusion

We provide a comprehensive classification of the anatomy of the AF, regarding the orientation and cortical connections of its fibers. Although fiber orientation is very consistent, cortical endings of the AF may be different from one study to another, or from one individual to another which is a key element to understand the anatomical basis of current models of language or to guide intraoperative stimulation during awake surgery.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Reil JC (1809) Untersuchungen über den Bau des grossen Gehirns im Menschen. Arch Physiol 9:136–208

    Google Scholar 

  2. Catani M, Mesulam M (2008) The arcuate fasciculus and the disconnection theme in language and aphasia: history and current state. Cortex J Devoted Study Nerv Syst Behav 44:953–961. https://doi.org/10.1016/j.cortex.2008.04.002

    Article  Google Scholar 

  3. Zemmoura I, Vons J, Velut S, Destrieux C (2015) From Vesalius to tractography. J Neurosurg Sci 59:309–325

    CAS  PubMed  Google Scholar 

  4. von Monakow C (1905) Gehirnpathologie. Alfred Hölder, Wien

    Google Scholar 

  5. Wiesendanger M (2006) Constantin von Monakow (1853–1930): a pioneer in interdisciplinary brain research and a humanist. C R Biol 329:406–418

    Article  PubMed  Google Scholar 

  6. Fernandez-Miranda JC, Rhoton AL, Alvarez-Linera J, Kakizawa Y, Choi C, de Oliveira EP (2008) Three-dimensional microsurgical and tractographic anatomy of the white matter of the human brain. Neurosurgery 62:989–1026. https://doi.org/10.1227/01.neu.0000333767.05328.49 (discussion 1026–1028)

    Article  PubMed  Google Scholar 

  7. Schmahmann JD, Pandya DN, Wang R, Dai G, D’Arceuil HE, de Crespigny AJ, Wedeen VJ (2007) Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain J Neurol 130:630–653. https://doi.org/10.1093/brain/awl359

    Article  Google Scholar 

  8. Türe U, Yaşargil MG, Friedman AH, Al-Mefty O (2000) Fiber dissection technique: lateral aspect of the brain. Neurosurgery 47:417–426 (discussion 426–427)

    Article  PubMed  Google Scholar 

  9. Bernal B, Ardila A (2009) The role of the arcuate fasciculus in conduction aphasia. Brain J Neurol 132:2309–2316. https://doi.org/10.1093/brain/awp206

    Article  Google Scholar 

  10. Dick AS, Tremblay P (2012) Beyond the arcuate fasciculus: consensus and controversy in the connectional anatomy of language. Brain J Neurol 135:3529–3550. https://doi.org/10.1093/brain/aws222

    Article  Google Scholar 

  11. Yagmurlu K, Middlebrooks EH, Tanriover N, Rhoton AL (2016) Fiber tracts of the dorsal language stream in the human brain. J Neurosurg 124:1396–1405. https://doi.org/10.3171/2015.5.JNS15455

    Article  PubMed  Google Scholar 

  12. Yeatman JD, Dougherty RF, Rykhlevskaia E, Sherbondy AJ, Deutsch GK, Wandell BA, Ben-Shachar M (2011) Anatomical properties of the arcuate fasciculus predict phonological and reading skills in children. J Cogn Neurosci 23:3304–3317. https://doi.org/10.1162/jocn_a_00061

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA, PRISMA-P Group (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ 350:g7647

    Article  Google Scholar 

  14. Destrieux C, Terrier LM, Andersson F, Love SA, Cottier J-P, Duvernoy H, Velut S, Janot K, Zemmoura I (2017) A practical guide for the identification of major sulcogyral structures of the human cortex. Brain Struct Funct 222:2001–2015. https://doi.org/10.1007/s00429-016-1320-z

    Article  PubMed  Google Scholar 

  15. Schmahmann JD, Pandya DN (2007) Cerebral white matter–historical evolution of facts and notions concerning the organization of the fiber pathways of the brain. J Hist Neurosci 16:237–267. https://doi.org/10.1080/09647040500495896

    Article  PubMed  Google Scholar 

  16. Burdach KF (1826) Vom Baue und Leben des Gehirns (Vol. 3). Leipz Ger Dyk’schen Buchhandlung

  17. Mayo H (1827) A series of engravings intended to illustrate the structure of the brain and spinal chord in man. Burgess and Hill, Great Windmill Street

    Google Scholar 

  18. Meynert T (1885) Psychiatry: clinical treatise on the diseases of the fore-brain, trans. B Sachs N Y Lond GP Putnam

  19. Wernicke C, Hahn E, Sachs H (1897) Photographischer atlas de gehirns. Schniktte Durch Menschl Gehirn Photogr Orig Abt I—32 Front Durch Eine Grosshirn- Hemisphaü Re Breslau Schletter’schen Buchhandlung Franck Weigert

  20. Barker LF (1899) The nervous system and its constituent neurons: designed for the use of practitioners of medicine and of students of medicine and psychology. D. Appleton, Boston

    Google Scholar 

  21. Dejerine J, Dejerine-Klumpke A (1895) Anatomie des centres nerveux: Méthodes générales d’étude-embryologie-histogénèse et histologie. Anatomie du cerveau, Rueff

    Google Scholar 

  22. Déjerine J, Dejerine-Klumpke A (1901) Anatomie des centres nerveux. Tome II, Paris Rueff Cie Éditeurs

    Google Scholar 

  23. Paturet G, Bellocq P (1964) Traite d'anatomie humaine: systeme nerveux, vol 4. Masson & Cie Editeurs, pp 387–390

  24. Wedeen VJ, Wang RP, Schmahmann JD, Benner T, Tseng WYI, Dai G, Pandya DN, Hagmann P, D’Arceuil H, de Crespigny AJ (2008) Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. NeuroImage 41:1267–1277. https://doi.org/10.1016/j.neuroimage.2008.03.036

    Article  CAS  PubMed  Google Scholar 

  25. Bürgel U, Amunts K, Hoemke L, Mohlberg H, Gilsbach JM, Zilles K (2006) White matter fiber tracts of the human brain: three-dimensional mapping at microscopic resolution, topography and intersubject variability. NeuroImage 29:1092–1105. https://doi.org/10.1016/j.neuroimage.2005.08.040

    Article  PubMed  Google Scholar 

  26. Amunts K, Willmes K (2006) From intersubject variability in clinical syndromes to anatomical variability. Brain Lang 96:147–150. https://doi.org/10.1016/j.bandl.2005.06.004 (discussion 157–170)

    Article  PubMed  Google Scholar 

  27. Duffau H, Moritz-Gasser S, Mandonnet E (2014) A re-examination of neural basis of language processing: proposal of a dynamic hodotopical model from data provided by brain stimulation mapping during picture naming. Brain Lang 131:1–10. https://doi.org/10.1016/j.bandl.2013.05.011

    Article  PubMed  Google Scholar 

  28. Catani M, Jones DK, Ffytche DH (2005) Perisylvian language networks of the human brain. Ann Neurol 57:8–16. https://doi.org/10.1002/ana.20319

    Article  PubMed  Google Scholar 

  29. Hagmann P, Jonasson L, Maeder P, Thiran J-P, Wedeen VJ, Meuli R (2006) Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics 26(Suppl 1):S205–S223. https://doi.org/10.1148/rg.26si065510

    Article  Google Scholar 

  30. Powell HWR, Parker GJM, Alexander DC, Symms MR, Boulby PA, Wheeler-Kingshott CAM, Barker GJ, Noppeney U, Koepp MJ, Duncan JS (2006) Hemispheric asymmetries in language-related pathways: a combined functional MRI and tractography study. NeuroImage 32:388–399. https://doi.org/10.1016/j.neuroimage.2006.03.011

    Article  PubMed  Google Scholar 

  31. Vernooij MW, Smits M, Wielopolski PA, Houston GC, Krestin GP, van der Lugt A (2007) Fiber density asymmetry of the arcuate fasciculus in relation to functional hemispheric language lateralization in both right- and left-handed healthy subjects: a combined fMRI and DTI study. NeuroImage 35:1064–1076. https://doi.org/10.1016/j.neuroimage.2006.12.041

    Article  CAS  PubMed  Google Scholar 

  32. Chang EF, Raygor KP, Berger MS (2015) Contemporary model of language organization: an overview for neurosurgeons. J Neurosurg 122:250–261. https://doi.org/10.3171/2014.10.JNS132647

    Article  PubMed  Google Scholar 

  33. Catani M, Allin MPG, Husain M, Pugliese L, Mesulam MM, Murray RM, Jones DK (2007) Symmetries in human brain language pathways correlate with verbal recall. Proc Natl Acad Sci USA 104:17163–17168. https://doi.org/10.1073/pnas.0702116104

    Article  PubMed  Google Scholar 

  34. Gharabaghi A, Kunath F, Erb M, Saur R, Heckl S, Tatagiba M, Grodd W, Karnath H-O (2009) Perisylvian white matter connectivity in the human right hemisphere. BMC Neurosci 10:15. https://doi.org/10.1186/1471-2202-10-15

    Article  PubMed  PubMed Central  Google Scholar 

  35. Geng JJ, Vossel S (2013) Re-evaluating the role of TPJ in attentional control: contextual updating? Neurosci Biobehav Rev 37:2608–2620. https://doi.org/10.1016/j.neubiorev.2013.08.010

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mars RB, Jbabdi S, Sallet J, O’Reilly JX, Croxson PL, Olivier E, Noonan MP, Bergmann C, Mitchell AS, Baxter MG, Behrens TEJ, Johansen-Berg H, Tomassini V, Miller KL, Rushworth MFS (2011) Diffusion-weighted imaging tractography-based parcellation of the human parietal cortex and comparison with human and macaque resting-state functional connectivity. J Neurosci 31:4087–4100. https://doi.org/10.1523/JNEUROSCI.5102-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fernández-Miranda JC, Wang Y, Pathak S, Stefaneau L, Verstynen T, Yeh F-C (2015) Asymmetry, connectivity, and segmentation of the arcuate fascicle in the human brain. Brain Struct Funct 220:1665–1680. https://doi.org/10.1007/s00429-014-0751-7

    Article  PubMed  Google Scholar 

  38. Fridriksson J, Kjartansson O, Morgan PS, Hjaltason H, Magnusdottir S, Bonilha L, Rorden C (2010) Impaired speech repetition and left parietal lobe damage. J Neurosci Off J Soc Neurosci 30:11057–11061. https://doi.org/10.1523/JNEUROSCI.1120-10.2010

    Article  CAS  Google Scholar 

  39. Mandonnet E, Duffau H (2014) Understanding entangled cerebral networks: a prerequisite for restoring brain function with brain-computer interfaces. Front Syst Neurosci 8:82. https://doi.org/10.3389/fnsys.2014.00082

    Article  PubMed  PubMed Central  Google Scholar 

  40. Martino J, De Witt Hamer PC, Berger MS, Lawton MT, Arnold CM, de Lucas EM, Duffau H (2013) Analysis of the subcomponents and cortical terminations of the perisylvian superior longitudinal fasciculus: a fiber dissection and DTI tractography study. Brain Struct Funct 218:105–121. https://doi.org/10.1007/s00429-012-0386-5

    Article  PubMed  Google Scholar 

  41. Glasser MF, Rilling JK (2008) DTI tractography of the human brain’s language pathways. Cereb Cortex 18:2471–2482. https://doi.org/10.1093/cercor/bhn011

    Article  PubMed  Google Scholar 

  42. Saur D, Kreher BW, Schnell S, Kümmerer D, Kellmeyer P, Vry M-S, Umarova R, Musso M, Glauche V, Abel S, Huber W, Rijntjes M, Hennig J, Weiller C (2008) Ventral and dorsal pathways for language. Proc Natl Acad Sci USA 105:18035–18040. https://doi.org/10.1073/pnas.0805234105

    Article  PubMed  Google Scholar 

  43. Brauer J, Anwander A, Perani D, Friederici AD (2013) Dorsal and ventral pathways in language development. Brain Lang 127:289–295. https://doi.org/10.1016/j.bandl.2013.03.001

    Article  PubMed  Google Scholar 

  44. Friederici AD, Meyer M, von Cramon DY (2000) Auditory language comprehension: an event-related fMRI study on the processing of syntactic and lexical information. Brain Lang 74:289–300. https://doi.org/10.1006/brln.2000.2313

    Article  CAS  PubMed  Google Scholar 

  45. Perani D, Saccuman MC, Scifo P, Anwander A, Awander A, Spada D, Baldoli C, Poloniato A, Lohmann G, Friederici AD (2011) Neural language networks at birth. Proc Natl Acad Sci USA 108:16056–16061. https://doi.org/10.1073/pnas.1102991108

    Article  PubMed  Google Scholar 

  46. Duffau H, Gatignol P, Denvil D, Lopes M, Capelle L (2003) The articulatory loop: study of the subcortical connectivity by electrostimulation. NeuroReport 14:2005–2008. https://doi.org/10.1097/01.wnr.0000094103.16607.9f

    Article  PubMed  Google Scholar 

  47. Makris N, Kennedy DN, McInerney S, Sorensen AG, Wang R, Caviness VS, Pandya DN (2005) Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cereb Cortex 15:854–869. https://doi.org/10.1093/cercor/bhh186

    Article  PubMed  Google Scholar 

  48. Martino J, De Witt Hamer PC, Vergani F, Brogna C, de Lucas EM, Vázquez-Barquero A, García-Porrero JA, Duffau H (2011) Cortex-sparing fiber dissection: an improved method for the study of white matter anatomy in the human brain. J Anat 219:531–541. https://doi.org/10.1111/j.1469-7580.2011.01414.x

    Article  PubMed  PubMed Central  Google Scholar 

  49. Dell’acqua F, Scifo P, Rizzo G, Catani M, Simmons A, Scotti G, Fazio F (2010) A modified damped Richardson-Lucy algorithm to reduce isotropic background effects in spherical deconvolution. NeuroImage 49:1446–1458. https://doi.org/10.1016/j.neuroimage.2009.09.033

    Article  PubMed  Google Scholar 

  50. Thiebaut de Schotten M, Dell’Acqua F, Forkel SJ, Simmons A, Vergani F, Murphy DGM, Catani M (2011) A lateralized brain network for visuospatial attention. Nat Neurosci 14:1245–1246. https://doi.org/10.1038/nn.2905

    Article  CAS  PubMed  Google Scholar 

  51. Zemmoura I, Serres B, Andersson F, Barantin L, Tauber C, Filipiak I, Cottier J-P, Venturini G, Destrieux C (2014) FIBRASCAN: a novel method for 3D white matter tract reconstruction in MR space from cadaveric dissection. NeuroImage 103:106–118. https://doi.org/10.1016/j.neuroimage.2014.09.016

    Article  PubMed  Google Scholar 

  52. Axer M, Grässel D, Kleiner M, Dammers J, Dickscheid T, Reckfort J, Hütz T, Eiben B, Pietrzyk U, Zilles K, Amunts K (2011) High-resolution fiber tract reconstruction in the human brain by means of three-dimensional polarized light imaging. Front Neuroinform 5:34. https://doi.org/10.3389/fninf.2011.00034

    Article  PubMed  PubMed Central  Google Scholar 

  53. Mandonnet E, Sarubbo S, Petit L (2018) The nomenclature of human white matter association pathways: proposal for a systematic taxonomic anatomical classification. Front Neuroanat 12:94

    Article  PubMed  PubMed Central  Google Scholar 

  54. Nucifora PGP, Verma R, Melhem ER, Gur RE, Gur RC (2005) Leftward asymmetry in relative fiber density of the arcuate fasciculus. NeuroReport 16:791–794

    Article  PubMed  Google Scholar 

  55. Kaplan E, Naeser MA, Martin PI, Ho M, Wang Y, Baker E, Pascual-Leone A (2010) Horizontal portion of arcuate fasciculus fibers track to pars opercularis, not pars triangularis, in right and left hemispheres: a DTI study. NeuroImage 52:436–444. https://doi.org/10.1016/j.neuroimage.2010.04.247

    Article  PubMed  PubMed Central  Google Scholar 

  56. De Benedictis A, Duffau H, Paradiso B, Grandi E, Balbi S, Granieri E, Colarusso E, Chioffi F, Marras CE, Sarubbo S (2014) Anatomo-functional study of the temporo-parieto-occipital region: dissection, tractographic and brain mapping evidence from a neurosurgical perspective. J Anat 225:132–151. https://doi.org/10.1111/joa.12204

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kamali A, Flanders AE, Brody J, Hunter JV, Hasan KM (2014) Tracing superior longitudinal fasciculus connectivity in the human brain using high resolution diffusion tensor tractography. Brain Struct Funct 219:269–281. https://doi.org/10.1007/s00429-012-0498-y

    Article  PubMed  Google Scholar 

  58. Wang X, Pathak S, Stefaneanu L, Yeh F-C, Li S, Fernandez-Miranda JC (2016) Subcomponents and connectivity of the superior longitudinal fasciculus in the human brain. Brain Struct Funct 221:2075–2092. https://doi.org/10.1007/s00429-015-1028-5

    Article  PubMed  Google Scholar 

  59. Güngör A, Baydin S, Middlebrooks EH, Tanriover N, Isler C, Rhoton AL (2017) The white matter tracts of the cerebrum in ventricular surgery and hydrocephalus. J Neurosurg 126:945–971. https://doi.org/10.3171/2016.1.JNS152082

    Article  PubMed  Google Scholar 

Download references

Funding

None of us disclose any financial support or industry affiliation.

Author information

Authors and Affiliations

Authors

Contributions

FB: project development; data collection and management; data analysis; manuscript writing/editing; reviewed final version of the manuscript and approval for submission. IZ: data analysis; manuscript writing; critical revision of the article; reviewed final version of the manuscript and approval for submission. ATM: analysis and interpretation of data; critical revision of the article; reviewed final version of the manuscript and approval for submission. JML: reviewed final version of the manuscript and approval for submission. PM: project development; analysis and interpretation of data; critical revision of the article; reviewed final version of the manuscript and approval for submission.

Corresponding author

Correspondence to Florian Bernard.

Ethics declarations

Conflict of interest

The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bernard, F., Zemmoura, I., Ter Minassian, A. et al. Anatomical variability of the arcuate fasciculus: a systematical review. Surg Radiol Anat 41, 889–900 (2019). https://doi.org/10.1007/s00276-019-02244-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-019-02244-5

Keywords

  • Arcuate fasciculus
  • Fiber dissection
  • Diffusion tensor imaging
  • Fiber tracts
  • Anatomy
  • Review