Skip to main content

Advertisement

Log in

The suprapineal recess of the third ventricle: an anatomic study with magnetic resonance imaging

  • Original Article
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

Purpose

The suprapineal recess (SPR) is a small, backward extension of the third ventricle. Few radiological studies have investigated the morphology of the SPR. Here, we explore the SPR with magnetic resonance (MR) imaging.

Methods

A total of 124 patients underwent thin-slice MR imaging examinations with T2-weighted imaging and the constructive interference steady-state (CISS) sequence. Imaging data were transferred to a workstation for analysis.

Results

The pineal gland (P) was delineated in 99% of the patients on T2-weighted imaging and 100% of the patients on the CISS sequence. In contrast, the SPR was identified in 27% of the patients on T2-weighted imaging and 82% of the patients on the CISS sequence. The location of the P relative to the lowest point of the splenium was roughly classified into two types. Of them, the anterior P location was the more frequent type and observed in 73% of the patients. The angle formed by the roof and floor of the SPR showed remarkable interindividual diversity. A membranous posterior extension with variable length, spanning between the posterosuperior margin of the P and Galenic complex was found in 55% of the identified SPRs on T2-weighted imaging and 45% on the CISS sequence.

Conclusions

The SPR is a distinct structure with diversity in appearance among individuals but commonly extends posterior to the P. High-resolution MR imaging is useful for delineating the SPR in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Azzi C, Giaconia MB, Lacalm A, Massoud M, Gaucherand P, Guibaud L (2014) Dilatation of the supra-pineal recess on prenatal imaging: early clue for obstructive ventriculomegaly downstream of the third ventricle. Prenat Diagn 34:394–401

    Article  PubMed  Google Scholar 

  2. Barkovich AJ, Latel-Hajnal B, Partridge JC, Sola A, Ferriero DM (1997) MR contrast enhancement of the normal neonatal brain. AJNR Am J Neuroradiol 18:1713–1717

    CAS  PubMed  Google Scholar 

  3. Burmeister HP, Möslein C, Bitter T, Fröber R, Herrmann H, Baltzer PA, Gudziol H, Dietzel M, Guntinas-Lichius O, Kaiser WA (2011) In vitro comparison of water displacement method and 3 Tesla MRI for MR-volumetry of the olfactory bulb: which sequence is appropriate? Acad Radiol 18:1233–1240

    Article  PubMed  Google Scholar 

  4. Cavallo LM, Di Somma A, De Notaris M, Prats-Galino A, Aydin S, Catapano G, Solari D, de Divitiis O, Somma T, Cappabianca P (2015) Extended endoscopic endonasal approach to the third ventricle: multimodal anatomical study with surgical implications. World Neurosurg 84:267–278

    Article  PubMed  Google Scholar 

  5. Daniel RT, Lee GY, Reilly PL (2004) Suprapineal recess: an alternate site for third ventriculostomy? Case report. J Neurosurg 101:518–520

    Article  PubMed  Google Scholar 

  6. Hansen PE, Ballesteros MC, Soila K, Garcia L, Howard JM (1993) MR imaging of the developing human brain. Part 1. Pineal development. Radiographics 13:21–36

    Article  CAS  PubMed  Google Scholar 

  7. Held P, Fellner C, Fellner F, Seitz J, Graf S, Hilbert M, Strutz J (1997) MRI of inner ear and facial nerve pathology using 3D MP-RAGE and 3D CISS sequences. Br J Radiol 70:558–566

    Article  CAS  PubMed  Google Scholar 

  8. Horsburgh A, Massoud TF (2013) The circumventricular organs of the brain: conspicuity on clinical 3T MRI and a review of functional anatomy. Surg Radiol Anat 35:343–349

    Article  PubMed  Google Scholar 

  9. Idris Z, Johnson JR, Abdullah JM (2015) Endoscopic fenestration at the splenial-habenular junctional area for symptomatic cavum and tumor at the foramen of Monro: case reports and anatomical review. J Neurosurg 122:504–510

    Article  PubMed  Google Scholar 

  10. Inoue Y, Saiwai S, Miyamoto T, Katsuyama J (1994) Enhanced high-resolution sagittal MRI of normal pineal glands. J Comput Assist Tomogr 18:182–186

    Article  CAS  PubMed  Google Scholar 

  11. Korf HW, Oksche A, Ekström P, Gery I, Zigler JS Jr, Klein DC (1986) Pinealocyte projections into the mammalian brain revealed with S-antigen antiserum. Science 231:735–737

    Article  CAS  PubMed  Google Scholar 

  12. Longatti P, Perin A, Rizzo V, Comai S, Bertazzo A, Allegri G (2004) Endoscopic selective sampling of human ventricular CSF: a new perspective. Minim Invasive Neurosurg 47:350–354

    Article  CAS  PubMed  Google Scholar 

  13. Longatti P, Perin A, Rizzo V, Comai S, Giusti P, Costa CV (2007) Ventricular cerebrospinal fluid melatonin concentrations investigated with an endoscopic technique. J Pineal Res 42:113–118

    Article  CAS  PubMed  Google Scholar 

  14. Plets C (1969) The arterial blood supply and angioarchitecture of the posterior wall of the third ventricle. Acta Neurochir (Wien) 21:309–317

    Article  CAS  Google Scholar 

  15. Qi ST, Zhang XA, Fan J, Huang GL, Pan J, Qiu BH (2011) Anatomical study of the arachnoid envelope over the pineal region. Neurosurgery 68(1 Suppl Operative):7–15

  16. Reiter RJ, Tan DX, Kim SJ, Cruz MH (2014) Delivery of pineal melatonin to the brain and SCN: role of canaliculi, cerebrospinal fluid, tanycytes and Virchow–Robin perivascular spaces. Brain Struct Funct 219:1873–1887

    Article  CAS  PubMed  Google Scholar 

  17. Rhoton Al Jr (2002) The lateral and third ventricles. Neurosurgery 51(4 Suppl):S207–S271

    PubMed  Google Scholar 

  18. Schmidt F, Penka B, Trauner M, Reinsperger L, Ranner G, Ebner F, Waldhauser F (1995) Lack of pineal growth during childhood. J Clin Endocrinol Metab 80:1221–1225

    CAS  PubMed  Google Scholar 

  19. Sumida M, Barkovich AJ, Newton TH (1996) Development of the pineal gland: measurement with MRI. AJNR Am J Neuroradiol 17:233–236

    CAS  PubMed  Google Scholar 

  20. Sun B, Wang D, Tang Y, Fan L, Lin H, Yu T, Qi H, Li Z, Liu S (2009) The pineal volume: a three-dimensional volumetric study in healthy adults using 3.0 T MR data. Int J Dev Neurosci 27:655–660

    Article  PubMed  Google Scholar 

  21. Sun B, Tang YC, Fan LZ, Lin XT, Li ZP, Qi HT, Liu SW (2008) The pineal region: thin sectional anatomy with MR correlation in the coronal plane. Surg Radiol Anat 30:575–582

    Article  PubMed  Google Scholar 

  22. Tricoire H, Locatelli A, Chemineau P, Malpaux B (2002) Melatonin enters the cerebrospinal fluid through the pineal recess. Endocrinology 143:84–90

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work did not receive any grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Tsutsumi.

Ethics declarations

Conflict of interest

The authors have no conflict of interest concerning the materials or methods in this study or the findings specified in this paper.

Additional information

Satoshi Tsutsumi, Hideo Ono, and Yukimasa Yasumoto contributed equally to the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsutsumi, S., Ono, H. & Yasumoto, Y. The suprapineal recess of the third ventricle: an anatomic study with magnetic resonance imaging. Surg Radiol Anat 39, 725–730 (2017). https://doi.org/10.1007/s00276-016-1794-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-016-1794-7

Keywords

Navigation