Reference data on muscle volumes of healthy human pelvis and lower extremity muscles: an in vivo magnetic resonance imaging feasibility study



Muscle volumes are of crucial interest when attempting to analyze individual physical performance and disease- or age-related alterations in muscle morphology. However, very little reference data are available in the literature on pelvis and lower extremity muscle volumes originating from healthy and young individuals. Furthermore, it is of interest if representative muscle volumes, covering large anatomical regions, can be obtained using magnetic resonance imaging (MRI) in a setting similar to the clinical routine. Our objective was therefore to provide encompassing, bilateral, 3-T MRI-based datasets on muscle volumes of the pelvis and the lower limb muscles.


T1-weighted 3-T MRI records were obtained bilaterally from six young and healthy participants. Three-dimensional volumes were compiled from 28 muscles and muscle groups of each participant before the muscle volumes were computed.


Muscle volumes were obtained from 28 muscles and muscle groups of the pelvis and lower extremity. Volumes were larger in male than in female participants. Volumes of the dominant and non-dominant sides were similar in both genders. The obtained results were in line with volumetric data obtained from smaller anatomical areas, thus extending the available datasets.


This study provides an encompassing and feasible approach to obtain data on the muscle volumes of pelvic and limb muscles of healthy, young, and physically active individuals. The respective data form a basis to determine effects of therapeutic approaches, progression of diseases, or technical applications like automated segmentation algorithms applied to different populations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Akagi R, Tohdoh Y, Takahashi H (2013) Sex difference in strength and size ratios between reciprocal muscle groups in the lower leg. Int J Sports Med 34:449–452. doi:10.1055/s-0032-1327654

    CAS  PubMed  Google Scholar 

  2. 2.

    Barnouin Y, Butler-Browne G, Voit T, Reversat D, Azzabou N, Leroux G, Behin A, McPhee JS, Carlier PG, Hogrel JY (2014) Manual segmentation of individual muscles of the quadriceps femoris using MRI: a reappraisal. J Magn Reson Imaging 40:239–247. doi:10.1002/jmri.24370

    Article  PubMed  Google Scholar 

  3. 3.

    Belavy DL, Miokovic T, Rittweger J, Felsenberg D (2011) Estimation of changes in volume of individual lower-limb muscles using magnetic resonance imaging (during bed-rest). Physiol Meas 32:35–50. doi:10.1088/0967-3334/32/1/003

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Berg HE, Tedner B, Tesch PA (1993) Changes in lower limb muscle cross-sectional area and tissue fluid volume after transition from standing to supine. Acta Physiol Scand 148:379–385. doi:10.1111/j.1748-1716.1993.tb09573.x

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Chen WM, Park J, Park SB, Shim VP, Lee T (2012) Role of gastrocnemius-soleus muscle in forefoot force transmission at heel rise—a 3D finite element analysis. J Biomech 45:1783–1789. doi:10.1016/j.jbiomech.2012.04.024

    Article  PubMed  Google Scholar 

  6. 6.

    Cotofana S, Hudelmaier M, Wirth W, Himmer M, Ring-Dimitriou S, Sanger AM, Eckstein F (2010) Correlation between single-slice muscle anatomical cross-sectional area and muscle volume in thigh extensors, flexors and adductors of perimenopausal women. Eur J Appl Physiol 110:91–97. doi:10.1007/s00421-010-1477-8

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Csapo R, Malis V, Sinha U, Du J, Sinha S (2014) Age-associated differences in triceps surae muscle composition and strength—an MRI-based cross-sectional comparison of contractile, adipose and connective tissue. BMC Musculoskelet Disord 15:209. doi:10.1186/1471-2474-15-209

    PubMed Central  Article  PubMed  Google Scholar 

  8. 8.

    Flack NA, Meikle GR, Reddy M, Nicholson HD, Woodley SJ (2012) Hip abductor muscle volume in women with lateral hip pain: a case-controlled study. Surg Radiolog Anat SRA 34:847–855. doi:10.1007/s00276-012-0970-7

    Article  CAS  Google Scholar 

  9. 9.

    Flack NA, Nicholson HD, Woodley SJ (2012) A review of the anatomy of the hip abductor muscles, gluteus medius, gluteus minimus, and tensor fascia lata. Clin Anat 25:697–708. doi:10.1002/ca.22004

    Article  PubMed  Google Scholar 

  10. 10.

    Fukunaga T, Roy RR, Shellock FG, Hodgson JA, Day MK, Lee PL, Kwong-Fu H, Edgerton VR (1992) Physiological cross-sectional area of human leg muscles based on magnetic resonance imaging. J Orthop Res 10:928–934. doi:10.1002/jor.1100100623

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Grimaldi A, Richardson C, Durbridge G, Donnelly W, Darnell R, Hides J (2009) The association between degenerative hip joint pathology and size of the gluteus maximus and tensor fascia lata muscles. Man Ther 14:611–617. doi:10.1016/j.math.2008.11.002

    Article  PubMed  Google Scholar 

  12. 12.

    Handsfield GG, Meyer CH, Hart JM, Abel MF, Blemker SS (2014) Relationships of 35 lower limb muscles to height and body mass quantified using MRI. J Biomech 47:631–638. doi:10.1016/j.jbiomech.2013.12.002

    Article  PubMed  Google Scholar 

  13. 13.

    Helms CA (2009) Musculoskeletal MRI. Saunders/Elsevier, Philadelphia

    Google Scholar 

  14. 14.

    Kawashima S, Akima H, Kuno SY, Gunji A, Fukunaga T (2004) Human adductor muscles atrophy after short duration of unweighting. Eur J Appl Physiol 92:602–605. doi:10.1007/s00421-004-1184-4

    Article  PubMed  Google Scholar 

  15. 15.

    Konishi Y, Oda T, Tsukazaki S, Kinugasa R, Hirose N, Fukubayashi T (2011) Relationship between quadriceps femoris muscle volume and muscle torque after anterior cruciate ligament rupture. Knee Surg Sports Traumatol Arthrosc 19:641–645. doi:10.1007/s00167-010-1324-9

    Article  PubMed  Google Scholar 

  16. 16.

    Krainski F, Hastings JL, Heinicke K, Romain N, Pacini EL, Snell PG, Wyrick P, Palmer MD, Haller RG, Levine BD (2014) The effect of rowing ergometry and resistive exercise on skeletal muscle structure and function during bed rest. J Appl Physiol (1985) 116:1569–1581. doi:10.1152/japplphysiol.00803.2013

    Article  Google Scholar 

  17. 17.

    Maganaris CN, Baltzopoulos V, Tsaopoulos D (2006) Muscle fibre length-to-moment arm ratios in the human lower limb determined in vivo. J Biomech 39:1663–1668. doi:10.1016/j.jbiomech.2005.04.025

    Article  PubMed  Google Scholar 

  18. 18.

    Maughan RJ (1984) Relationship between muscle strength and muscle cross-sectional area. Implications for training. Sports Med 1:263–269

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Mersmann F, Bohm S, Schroll A, Boeth H, Duda G, Arampatzis A (2014) Muscle shape consistency and muscle volume prediction of thigh muscles. Scand J Med Sci Sports. doi:10.1111/sms.12285

    Google Scholar 

  20. 20.

    Miokovic T, Armbrecht G, Gast U, Rawer R, Roth HJ, Runge M, Felsenberg D, Belavy DL (2014) Muscle atrophy, pain, and damage in bed rest reduced by resistive (vibration) exercise. Med Sci Sports Exerc 46:1506–1516. doi:10.1249/MSS.0000000000000279

    Article  PubMed  Google Scholar 

  21. 21.

    Mitsuhashi N, Fujieda K, Tamura T, Kawamoto S, Takagi T, Okubo K (2009) BodyParts3D: 3D structure database for anatomical concepts. Nucleic Acids Res 37:D782–D785. doi:10.1093/nar/gkn613

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  22. 22.

    Morris VC, Murray MP, Delancey JO, Ashton-Miller JA (2012) A comparison of the effect of age on levator ani and obturator internus muscle cross-sectional areas and volumes in nulliparous women. Neurourol Urodyn 31:481–486. doi:10.1002/nau.21208

    PubMed Central  Article  PubMed  Google Scholar 

  23. 23.

    O’Brien TD, Reeves ND, Baltzopoulos V, Jones DA, Maganaris CN (2009) Strong relationships exist between muscle volume, joint power and whole-body external mechanical power in adults and children. Exp Physiol 94:731–738. doi:10.1113/expphysiol.2008.045062

    Article  PubMed  Google Scholar 

  24. 24.

    Ogawa M, Yasuda T, Abe T (2012) Component characteristics of thigh muscle volume in young and older healthy men. Clin Physiol Funct Imaging 32:89–93. doi:10.1111/j.1475-097X.2011.01057.x

    Article  PubMed  Google Scholar 

  25. 25.

    Park JS, Chung MS, Hwang SB, Lee YS, Har DH, Park HS (2005) Visible Korean human: improved serially sectioned images of the entire body. IEEE Trans Med Imaging 24:352–360

    Article  PubMed  Google Scholar 

  26. 26.

    Spitzer V, Ackerman MJ, Scherzinger AL, Whitlock D (1996) The visible human male: a technical report. J Am Med Inform Assoc 3:118–130

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  27. 27.

    Tate CM, Williams GN, Barrance PJ, Buchanan TS (2006) Lower extremity muscle morphology in young athletes: an MRI-based analysis. Med Sci Sports Exerc 38:122–128

    Article  PubMed  Google Scholar 

  28. 28.

    Thom JM, Morse CI, Birch KM, Narici MV (2005) Triceps surae muscle power, volume, and quality in older versus younger healthy men. J Gerontol A Biol Sci Med Sci 60:1111–1117

    Article  PubMed  Google Scholar 

  29. 29.

    Walton JM, Roberts N, Whitehouse GH (1997) Measurement of the quadriceps femoris muscle using magnetic resonance and ultrasound imaging. Br J Sports Med 31:59–64

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  30. 30.

    Ward SR, Eng CM, Smallwood LH, Lieber RL (2009) Are current measurements of lower extremity muscle architecture accurate? Clin Orthop Relat Res 467:1074–1082. doi:10.1007/s11999-008-0594-8

    PubMed Central  Article  PubMed  Google Scholar 

  31. 31.

    Wickiewicz TL, Roy RR, Powell PL, Edgerton VR (1983) Muscle architecture of the human lower limb. Clin Orthop Relat Res 179:275–283

    Article  PubMed  Google Scholar 

Download references


The authors would like to thank Susanne Bán, Philipp Pieroh, Uwe Planitzer, Maria Schaebs, and Felix Schmidt for their aid with the segmentations. Heike Röder obtained the MRI records and Gustav F. Preller proofread the manuscript as a native speaker.

Author information



Corresponding author

Correspondence to Niels Hammer.

Ethics declarations

Conflict of interest

The authors have no conflict of interest or financial disclosure related to this manuscript.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lube, J., Cotofana, S., Bechmann, I. et al. Reference data on muscle volumes of healthy human pelvis and lower extremity muscles: an in vivo magnetic resonance imaging feasibility study. Surg Radiol Anat 38, 97–106 (2016).

Download citation


  • Magnetic resonance imaging
  • Pelvis and lower limb muscle volume
  • Healthy young individuals