Skip to main content

Advertisement

Log in

The correlation between muscles insertions and topography of break lines in pertrochanteric fractures: a comprehensive anatomical approach of complex proximal femur injuries

  • Original Article
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

Purpose

The purpose of our work was to verify the hypothesis that muscle insertions and ligament attachments have an impact on the course of typical break lines in the area of the trochanteric massif, i.e., to provide a more detailed description of the origins and insertions of the musculo-ligamentous apparatus on the surface of the proximal femur, and to find a potential morphological correlate between muscle insertions and ligament attachments to the proximal femur and the course of the break line in a typical pertrochanteric fracture.

Methods

A detailed dissection of areas of trochanter major et minor, linea et crista intertrochanterica was performed in 50 anatomical preparations of the proximal femur, and the insertions of the muscular-ligamentous structures were described. The set of 600 radiographs were used to obtain projections of typical break lines on the proximal femur, and corresponding areas of exposed bone surface were identified in the anatomical preparations based on the projections and on 15 real specimens of patients after the pertrochanteric fracture osteosynthesis.

Results and conclusion

Bone covered only with the periosteum, with no reinforcing elements of the origin or insertions of muscles or attachments of ligaments, represents the locus minoris resistentiae for beginning of fractures. Variability in the sizes and shapes of pertrochanteric fracture fragments also depends on variability of the locations and sizes of soft tissue attachment areas at specified sites on the proximal femur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Baca V, Horak Z, Mikulenka P, Dzupa V (2008) Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions. Med Eng Phys 30:924–930

    Article  PubMed  Google Scholar 

  2. Baca V, Kachlik D, Horak Z, Stingl J (2007) The course of osteons in the compact bone of the human proximal femur—morphological study with clinical and biomechanical notes. Surg Radiol Anat 29:201–207

    Article  PubMed  Google Scholar 

  3. Boyce WJ, Vessey MP (1985) Rising incidence of the fractures of the proximal femur. Lancet 325:150–151

    Article  Google Scholar 

  4. Dimon JH, Hughston JC (1967) Unstable intertrochanteric fractures of the hip. J Bone Joint Surg Am 49:440–450

    PubMed  CAS  Google Scholar 

  5. Frohse F, Fränkel M (1913) Die Muskeln des Menschlichen Beines. Jena, G. Fischer

  6. Gotfried Y (2004) The lateral trochanteric wall. A key element in the reconstruction of the unstable pertrochanteric hip fractures. Clin Orthop 425:82–86

    Article  PubMed  Google Scholar 

  7. Griffin JB (1982) The calcar femorale redefined. Clin Orthop 164:211–214

    PubMed  Google Scholar 

  8. Hafferl A, Thiel W (1969) Lehrbuch der Topografischen Anatomie. Springer, Berlin

    Google Scholar 

  9. Howard A, Giannoudis PV (2012) Proximal femoral fractures: issues and challenges. Injury 43:1975–1977

    Article  PubMed  Google Scholar 

  10. Hu F, Jiang C, Shen J, Tang P, Wang Y (2012) Preoperative predictors for mortality following hip fracture surgery: a systematic review and meta-analysis. Injury 43:676–685

    Article  PubMed  Google Scholar 

  11. Im GL, Shin YW, Song YJ (2005) Potentially unstable intertrochanteric fractures. J Orthop Trauma 19:5–9

    Article  PubMed  Google Scholar 

  12. Janosik J (1898) Human anatomy (in Czech). JR Vilímek, Praha

    Google Scholar 

  13. Kennedy M, Mitra A, Hierlihy T, Harty J, Reidy D, Dolan M (2011) Subtrochanteric hip fractures treated with cerclage cables and long cephalomedullary nails: a review of 17 consecutive cases over 2 years. Injury 42:1317–1321

    Article  PubMed  Google Scholar 

  14. Kokoroghiannis C, Aktselis I, Deligeorgos A, Fragkomichalos E, Papadimas D, Pappadas I (2012) Evolving concepts of stability and intramedullary fixation of intertrochanteric fractures—a review. Injury 43:686–693

    Article  PubMed  Google Scholar 

  15. Kopsch F (1952) Lehrbuch und Atlas der Anatomie des Menschen. Arbeitsgemeinschaft Medizinischer Verlage G.M.B.H, Leipzig

  16. Lange F, Pitzen P (1921) Zur Anatomie des oberen Femurendes. Z Orthop Chir 41:105–134

    Google Scholar 

  17. Lenich A, Vester H, Nerlich M, Mayr E, Stockle U, Fuchtmeier B (2010) Clinical comparison of the second and third generation of intramedullary devices for trochanteric fractures of the hip—blade vs screw. Injury 41:1292–1296

    Article  PubMed  Google Scholar 

  18. Liodakis E, Kenawey M, Petri M, Zümrüt A, Hawi N, Krettek C et al (2011) Factors influencing neck anteversion during femoral nailing: a retrospective analysis of 220 torsion-difference CTs. Injury 42:1342–1345

    Article  PubMed  Google Scholar 

  19. Merkel F (1874) Betrachtungen über das Os Femoris. Arch Pathol Anat 59:237–256

    Article  Google Scholar 

  20. Moore KL (1985) Clinically oriented anatomy. Williams & Wilkins, Baltimore

    Google Scholar 

  21. Palm H, Jacobsen S, Sonne-Holm S, Gebuhr P (2007) Integrity of the lateral femoral wall intertrochanteric hip fractures: an important predictor of reoperation. J Bone Joint Surg Am 89:470–475

    Article  PubMed  Google Scholar 

  22. Pauwels F (1935) Der Schenkelhalsbruch: Ein mechanisches Problem. F. Enke, Stuttgart

    Google Scholar 

  23. Peltier LF (1990) Fractures: a history and iconography of their treatment. Norman Publishing, San Francisco

    Google Scholar 

  24. Rüedi TP, Buckley RE, Moran CG (2007) AO principles of fracture management: principals, vol. 1 and specific fractures, vol. 2, 2nd edn. Thieme, New York

    Google Scholar 

  25. Snell RS (1995) Clinical anatomy for medical students. Little, Brown and Company, New York

    Google Scholar 

  26. Waddell JP (2011) Fracture of the proximal femur: improving outcomes. Elsevier Saunders, Philadelphia

    Google Scholar 

  27. White SM, Griffiths R (2011) Projected incidence of proximal femoral fracture in England: a report from the NHS Hip Fracture Anaesthesia Network (HIPFAN). Injury 42:1230–1233

    Article  PubMed  CAS  Google Scholar 

  28. Williams PL et al (1999) Gray’s anatomy. Churchill Livingstone, New York

    Google Scholar 

  29. Zha GC, Chen ZL, Qi XB, Sun JY (2011) Treatment of pertrochanteric fractures with a proximal femur locking compression plate. Injury 42:1294–1299

    Article  PubMed  Google Scholar 

  30. Zuckerman JD (1996) Hip fracture. N Engl J Med 334:1519–1525

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by GAUK 420411 and OPPC CZ216/3100/24018. The authors would like to thank to prof. Jan Bartonicek for providing the original photos of the specimen with introduced implant.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaclav Baca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartoska, R., Baca, V., Kachlik, D. et al. The correlation between muscles insertions and topography of break lines in pertrochanteric fractures: a comprehensive anatomical approach of complex proximal femur injuries. Surg Radiol Anat 35, 957–962 (2013). https://doi.org/10.1007/s00276-013-1124-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-013-1124-2

Keywords

Navigation