Skip to main content
Log in

Hyaluronan within fascia in the etiology of myofascial pain

  • Original Article
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

The layers of loose connective tissue within deep fasciae were studied with particular emphasis on the histochemical distribution of hyaluronan (HA). Samples of deep fascia together with the underlying muscles were taken from neck, abdomen and thigh from three fresh non-embalmed cadavers. Samples were stained with hematoxylin–eosin, Azan-Mallory, Alcian blue and a biotinylated HA-binding protein specific for HA. An ultrasound study was also performed on 22 voluntary subjects to analyze the thickness of these deep fasciae and their sublayers. The deep fascia presented a layer of HA between fascia and the muscle and within the loose connective tissue that divided different fibrous sublayers of the deep fascia. A layer of fibroblast-like cells that stained prominently with Alcian blue stain was observed. It was postulated that these are cells specialized for the biosynthesis of the HA-rich matrix. These cells we have termed “fasciacytes”, and may represent a new class of cells not previously recognized. The ultrasound study highlighted a mean thickness of 1.88 mm of the fascia lata, 1.68 mm of the rectus sheath, and 1.73 mm of the sternocleidomastoid fascia. The HA within the deep fascia facilitates the free sliding of two adjacent fibrous fascial layers, thus promoting the normal function associated with the deep fascia. If the HA assumes a more packed conformation, or more generally, if the loose connective tissue inside the fascia alters its density, the behavior of the entire deep fascia and the underlying muscle would be compromised. This, we predict, may be the basis of the common phenomenon known as “myofascial pain.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Benetazzo L, Bizzego A, De Caro R, Frigo G, Guidolin D, Stecco C (2011) 3D reconstruction of the crural and thoracolumbar fasciae. Surg Radiol Anat. doi:10.1007/s00276-010-075-7

  2. Bhattacharya V, Barooah PS, Nag TC, Chaudhuri GR, Bhattacharya S (2011) Detail microscopic analysis of deep fascia of lower limb and its surgical implication. Indian J Plast Surg 43:135–140

    Article  Google Scholar 

  3. Bhattacharya V, Chaudhuri GR, Mishra B, Kumar U (2011) Demonstration of live lymphatic circulation in the deep fascia and its implication. Eur J Plast Surg 34:99–102. doi:10.1007/s00238-010-0474-9

    Article  Google Scholar 

  4. Chang SK, Gu Z, Brenner MB (2010) Fibroblast-like synoviocytes in inflammatory arthritis pathology: the emerging role of cadherin-11. Immunol Rev 233:256–266

    Article  PubMed  CAS  Google Scholar 

  5. Entwistle J, Hall CL, Turley EA (1996) HA receptors: regulators of signalling to the cytoskeleton. J Cell Biochem 61:569–577. doi:10.1002/(SICI)1097-4644(19960616)61:4<569:AID-JCB10>3.0.CO;2-B

    Article  PubMed  CAS  Google Scholar 

  6. Feinberg RN, Beebe DC (1983) Hyaluronate in vasculogenesis. Science 220:1177–1179. doi:10.1126/science.6857242

    Article  PubMed  CAS  Google Scholar 

  7. Fraser JR, Laurent TC, Laurent UB (1997) Hyaluronan: its nature, distribution, functions and turnover. J Intern Med 242:27–33. doi:10.1046/j.1365-2796.1997.00170.x

    Article  PubMed  CAS  Google Scholar 

  8. Graven-Nielsen T, Mense S, Arendt-Nielsen L (2004) Painful and non-painful pressure sensations from human skeletal muscle. Exp Brain Res 159:273–283. doi:10.1007/s00221-004-1937-7

    Article  PubMed  Google Scholar 

  9. Laurent C, Johnson-Wells G, Helstrom S, Engstrom-Laurent A, Wells AF (1991) Localization of hyaluronan in various muscular tissues. A morphologic study in the rat. Cell Tissue Res 263:201–205. doi:10.1007/BF00318761

    Article  PubMed  CAS  Google Scholar 

  10. Lancerotto L, Stecco C, Macchi V, Porzionato A, Stecco A, De Caro R (2011) Layers of the abdominal wall: anatomical investigation of subcutaneous tissue and superficial fascia. Surg Radiol Anat. doi:10.1007/s00276-010-0772-8

  11. Lee JY, Spicer AP (2000) Hyaluronan: a multifunctional, megaDalton, stealth molecule. Curr Opin Cell Biol 12:581–586. doi:10.1016/S0955-0674(00)00135-6

    Article  PubMed  CAS  Google Scholar 

  12. Matteini P, Dei L, Carretti E, Volpi N, Goti A, Pini R (2009) Structural behavior of highly concentrated hyaluronan. Biomacromolecules 10:1516–1522. doi:10.1021/bm900108z

    Article  PubMed  CAS  Google Scholar 

  13. McCombe D, Brown T, Slavin J, Morrison WA (2001) The histochemical structure of the deep fascia and its structural response to surgery. J Hand Surg Br 26:89–97. doi:10.1054/jhsb.2000.0546

    Article  PubMed  CAS  Google Scholar 

  14. Noble PW (2002) Hyaluronan and its catabolic products in tissue injury and repair. Matrix Biol 21:25–29. doi:10.1016/S0945-053X(01)00184-6

    Article  PubMed  CAS  Google Scholar 

  15. Piehl-Aulin K, Laurent C, Engström-Laurent A, Hellström S, Henriksson J (1991) Hyaluronan in human skeletal muscle of lower extremity: concentration, distribution, and effect of exercise. J Appl Physiol 71:2493–2498

    PubMed  CAS  Google Scholar 

  16. Sakamoto T, Ishibashi T (2011) Hyalocytes: essential cells of the vitreous cavity in vitreoretinal pathophysiology? Retina 31:222–228. doi:10.1097/IAE.0b013e3181facfa9

    Article  PubMed  Google Scholar 

  17. Scheibner KA, Lutz MA, Boodoo S, Fenton MJ, Powell JD, Horton MR (2006) Hyaluronan fragments act as an endogenous danger signal by engaging TLR2. J Immunol 177:1272–1281

    PubMed  CAS  Google Scholar 

  18. Scott JE, Heatley F (2002) Biological properties of hyaluronan in aqueous solution are controlled and sequestered by reversible tertiary structures, defined by NMR spectroscopy. Biomacromolecules 3:547–553. doi:10.1021/bm010170j

    Article  PubMed  CAS  Google Scholar 

  19. Spicer AP, Tien JY (2004) Hyaluronan and morphogenesis. Birth Defects Res C Embryo Today 72:89–108. doi:10.1002/bdrc.20006

    Article  PubMed  CAS  Google Scholar 

  20. Stecco C, Gagey O, Belloni A, Pozzuoli A, Porzionato A, Macchi V, Aldegheri R, De Caro R, Delmas V (2007) Anatomy of the deep fascia of the upper limb. Second part: study of innervation. Morphologie 91:38–43. doi:10.1016/j.morpho.2007.05.002

    Article  PubMed  CAS  Google Scholar 

  21. Stern R, Asari AA, Sugahara KN (2006) Hyaluronan fragments: an information-rich system. Eur J Cell Biol 85:699–715. doi:10.1016/j.ejcb.2006.05.009

    Article  PubMed  CAS  Google Scholar 

  22. Sugahara KN (2009) Hyaluronan fragments: informational polymers commandeered by cancers. In: Stern R (ed) Hyaluronan in cancer biology. Academic Press, San Diego, pp 221–254

    Chapter  Google Scholar 

  23. Swerup C, Rydqvist B (1996) A mathematical model of the crustacean stretch receptor neuron. Biomechanics of the receptor muscle, mechanosensitive ion channels, and macrotransducer properties. J Neurophysiol 76:2211–2220

    PubMed  CAS  Google Scholar 

  24. Toole BP (2004) Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 4:528–539. doi:10.1038/nrc1391

    Article  PubMed  CAS  Google Scholar 

  25. Turley EA, Noble PW, Bourguignon LY (2002) Signaling properties of hyaluronan receptors. J Biol Chem 277:4589–4592

    Article  PubMed  CAS  Google Scholar 

  26. West DC, Hampson IN, Arnold F, Kumar S (1985) Angiogenesis induced by degradation products of hyaluronic acid. Science 228:1324–1326. doi:10.1126/science.2408340

    Article  PubMed  CAS  Google Scholar 

  27. Wight TN, Potter-Perigo S (2011) The extracellular matrix: an active or passive player in fibrosis. Am J Physiol Gastrointest Liver Physiol [Epub ahead of print]

  28. Wilkinson RS, Fukami Y (1983) Responses of isolated Golgi tendon organs of cat to sinusoidal stretch. J Neurophysiol 49:976–988

    PubMed  CAS  Google Scholar 

  29. Younger JW, Shen YF, Goddard G, Mackey SC (2010) Chronic myofascial temporomandibular pain is associated with neural abnormalities in the trigeminal and limbic systems. Pain 149:222–228. doi:10.1016/j.pain.2010.01.006

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Stecco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stecco, C., Stern, R., Porzionato, A. et al. Hyaluronan within fascia in the etiology of myofascial pain. Surg Radiol Anat 33, 891–896 (2011). https://doi.org/10.1007/s00276-011-0876-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-011-0876-9

Keywords

Navigation