Skip to main content

Time-series clustering of remote sensing retrievals for defining management zones in a vineyard

Abstract

Management zones (MZs) are efficient for applying site-specific management in agricultural fields. This study proposes an approach for generating MZs using time-series clustering (TSC) to also enable time-specific management. TSC was applied to daily remote sensing retrievals in a California vineyard during four growing seasons (2015–2018) using three datasets: evapotranspiration (ET), leaf area index (LAI), and normalized difference vegetation index (NDVI). Distinct MZs were delineated based on similarities in pixel-level temporal dynamics for each dataset, using dissimilarity index to determine the optimal number of clusters and compare TSC results. The differences between the cluster centers were calculated, along with the ratio between the centers’ differences and the range of each dataset, denoting the degree of difference between MZs centers. Similarity between MZs from each factor was quantified using Cramer’s V and Fréchet distances. Finally, an aggregated (multi-factor) MZ map was generated using multivariate clustering. The resulting MZs were compared to a 2016 yield map to determine the significance of differences between means and distribution among MZs. The findings show that LAI TSC achieved the best cluster separation. The NDVI and LAI MZs maps were nearly identical (Cramer’s V of 0.97), while ET showed weaker similarities to NDVI and LAI (0.61 and 0.62, respectively). Similar findings were observed for the Fréchet distances. The yield values were found to be significantly different among MZs for all TSC maps. TSC may be further utilized for defining within-field spatial variability and temporal dynamics for precision irrigation practices that account for spatial and temporal variability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Acevedo-Opazo C, Tisseyre B, Guillaume S, Ojeda H (2008) The potential of high spatial resolution information to define within-vineyard zones related to vine water status. Precision agriculture. Springer, pp 285–302. https://doi.org/10.1007/s11119-008-9073-1

    Chapter  Google Scholar 

  2. Aghabozorgi S, Wah TY (2014) Effective clustering of time-series data using FCM. Int J Mach Learn Comput 4:170–176. https://doi.org/10.7763/ijmlc.2014.v4.407

    Article  Google Scholar 

  3. Aghabozorgi S, Seyed Shirkhorshidi A, Ying Wah T (2015) Time-series clustering—a decade review. Inf Syst. https://doi.org/10.1016/j.is.2015.04.007

    Article  Google Scholar 

  4. Akoglu H (2018) User’s guide to correlation coefficients. Turkish J Emerg Med. https://doi.org/10.1016/j.tjem.2018.08.001

    Article  Google Scholar 

  5. Albornoz EM, Kemerer AC, Galarza R, Mastaglia N, Melchiori R, Martínez CE (2018) Development and evaluation of an automatic software for management zone delineation. Precis Agric 19:463–476. https://doi.org/10.1007/s11119-017-9530-9

    Article  Google Scholar 

  6. Alt H, Godau M (1995) Computing the Frechet distance between two polygonal curves. Int J Comput Geom Appl 05:75–91. https://doi.org/10.1142/s0218195995000064

    Article  Google Scholar 

  7. Anderson MC, Norman JM, Mecikalski JR, Otkin JA, Kustas WP (2007) A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation. J Geophys Res Atmos. https://doi.org/10.1029/2006JD007506

    Article  Google Scholar 

  8. Anderson M, Gao F, Knipper K, Hain C, Dulaney W, Baldocchi D, Eichelmann E, Hemes K, Yang Y, Medellin-Azuara J, Kustas W (2018) Field-scale assessment of land and water use change over the California delta using remote sensing. Remote Sens 10:889. https://doi.org/10.3390/rs10060889

    Article  Google Scholar 

  9. Arab ST, Noguchi R, Matsushita S, Ahamed T (2021) Prediction of grape yields from time-series vegetation indices using satellite remote sensing and a machine-learning approach. Remote Sens Appl Soc Environ 22:100485. https://doi.org/10.1016/J.RSASE.2021.100485

    Article  Google Scholar 

  10. Brockwell PJ, Davis RA (2016) Introduction to time series and forecasting, 3rd edn. Springer, Cham

    Book  Google Scholar 

  11. Cammalleri C, Anderson MC, Gao F, Hain CR, Kustas WP (2014) Mapping daily evapotranspiration at field scales over rainfed and irrigated agricultural areas using remote sensing data fusion. Agric for Meteorol 186:1–11. https://doi.org/10.1016/j.agrformet.2013.11.001

    Article  Google Scholar 

  12. Campos I, Neale CMU, Calera A, Balbontín C, González-Piqueras J (2010) Assessing satellite-based basal crop coefficients for irrigated grapes (Vitis vinifera L.). Agric Water Manag 98:45–54. https://doi.org/10.1016/j.agwat.2010.07.011

    Article  Google Scholar 

  13. Cebeci Z (2018) Comparison of internal validity indices for fuzzy clustering. Journal of AgriculturalInformatics 10(2):1–14. https://doi.org/10.17700/jai.2019.10.2.537

  14. Claverie M, Ju J, Masek JG, Dungan JL, Vermote EF, Roger JC, Skakun SV, Justice C (2018) The harmonized landsat and sentinel-2 surface reflectance data set. Remote Sens Environ 219:145–161. https://doi.org/10.1016/J.RSE.2018.09.002

    Article  Google Scholar 

  15. Coble KH, Mishra AK, Ferrell S, Griffin T (2018) Big data in agriculture: a challenge for the future. Appl Econ Perspect Policy 40:79–96. https://doi.org/10.1093/aepp/ppx056

    Article  Google Scholar 

  16. Córdoba MA, Bruno CI, Costa JL, Peralta NR, Balzarini MG (2016) Protocol for multivariate homogeneous zone delineation in precision agriculture. Biosyst Eng 143:95–107. https://doi.org/10.1016/J.BIOSYSTEMSENG.2015.12.008

    Article  Google Scholar 

  17. Cunha M, Marçal ARS, Silva L (2010) Very early prediction of wine yield based on satellite data from VEGETATION. Int J Remote Sens 31:3125–3142. https://doi.org/10.1080/01431160903154382

    Article  Google Scholar 

  18. de Azevedo PV, Soares JM, de da Silva VPR, da Silva BB, Nascimento T (2008) Evapotranspiration of “Superior” grapevines under intermittent irrigation. Agric Water Manag 95:301–308. https://doi.org/10.1016/J.AGWAT.2007.10.011

    Article  Google Scholar 

  19. de Jong R, de Bruin S, de Wit A, Schaepman ME, Dent DL (2011) Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sens Environ 115:692–702. https://doi.org/10.1016/j.rse.2010.10.011

    Article  Google Scholar 

  20. Er-Raki S, Rodriguez JC, Garatuza-Payan J, Watts CJ, Chehbouni A (2013) Determination of crop evapotranspiration of table grapes in a semi-arid region of Northwest Mexico using multi-spectral vegetation index. Agric Water Manag 122:12–19. https://doi.org/10.1016/j.agwat.2013.02.007

    Article  Google Scholar 

  21. Fontanet M, Scudiero E, Skaggs TH, Fernàndez-Garcia D, Ferrer F, Rodrigo G, Bellvert J (2020) Dynamic Management zones for irrigation scheduling. Agric Water Manag 238:106207. https://doi.org/10.1016/j.agwat.2020.106207

    Article  Google Scholar 

  22. Gao F, Masek J, Schwaller M, Hall F (2006) On the blending of the landsat and MODIS surface reflectance: predicting daily landsat surface reflectance. IEEE Trans Geosci Remote Sens 44:2207–2218. https://doi.org/10.1109/TGRS.2006.872081

    Article  Google Scholar 

  23. Gao F, Anderson MC, Kustas WP, Wang Y (2012) Simple method for retrieving leaf area index from Landsat using MODIS leaf area index products as reference. J Appl Remote Sens 6:063554. https://doi.org/10.1117/1.jrs.6.063554

    Article  Google Scholar 

  24. Gao F, Anderson MC, Kustas WP, Houborg R (2014) Retrieving leaf area index from landsat using MODIS LAI products and field measurements. IEEE Geosci Remote Sens Lett 11:773–777. https://doi.org/10.1109/LGRS.2013.2278782

    Article  Google Scholar 

  25. Gao F, Anderson M, Daughtry C, Karnieli A, Hively D, Kustas W (2020) A within-season approach for detecting early growth stages in corn and soybean using high temporal and spatial resolution imagery. Remote Sens Environ 242:111752. https://doi.org/10.1016/j.rse.2020.111752

    Article  Google Scholar 

  26. Gath I, Geva AB (1989) Unsupervised optimal fuzzy clustering. IEEE Trans Pattern Anal Mach Intell 11:773–780. https://doi.org/10.1109/34.192473

    Article  Google Scholar 

  27. Geli HME, González-Piqueras J, Neale CMU, Balbontín C, Campos I, Calera A (2019) Effects of surface heterogeneity due to drip irrigation on scintillometer estimates of sensible, latent heat fluxes and evapotranspiration over vineyards. Water 12:81. https://doi.org/10.3390/w12010081

    Article  Google Scholar 

  28. Gómez C, White JC, Wulder MA (2016) Optical remotely sensed time series data for land cover classification: a review. ISPRS J Photogramm Remote Sens. https://doi.org/10.1016/j.isprsjprs.2016.03.008

    Article  Google Scholar 

  29. Gower JC (1971) A general coefficient of similarity and some of its properties. Biometrics 27:857. https://doi.org/10.2307/2528823

    Article  Google Scholar 

  30. Granell R, Axon CJ, Wallom DCH (2015) Impacts of raw data temporal resolution using selected clustering methods on residential electricity load profiles. IEEE Trans Power Syst 30:3217–3224. https://doi.org/10.1109/TPWRS.2014.2377213

    Article  Google Scholar 

  31. Haghverdi A, Leib BG, Washington-Allen RA, Ayers PD, Buschermohle MJ (2015) Perspectives on delineating management zones for variable rate irrigation. Comput Electron Agric 117:154–167. https://doi.org/10.1016/J.COMPAG.2015.06.019

    Article  Google Scholar 

  32. Hall A, Louis JP, Lamb DW (2008) Low-resolution remotely sensed images of winegrape vineyards map spatial variability in planimetric canopy area instead of leaf area index. Aust J Grape Wine Res 14:9–17. https://doi.org/10.1111/j.1755-0238.2008.00002.x

    Article  Google Scholar 

  33. Johnson LF (2003) Temporal stability of an NDVI-LAI relationship in a Napa Valley vineyard. Aust J Grape Wine Res 9:96–101. https://doi.org/10.1111/j.1755-0238.2003.tb00258.x

    Article  Google Scholar 

  34. Johnson LF, Roczen DE, Youkhana SK, Nemani RR, Bosch DF (2003) Mapping vineyard leaf area with multispectral satellite imagery. Comput Electron Agric 38:33–44. https://doi.org/10.1016/S0168-1699(02)00106-0

    Article  Google Scholar 

  35. Kaufman L, Rousseeuw PJ (1990) Finding groups in data: an introduction to cluster analysis, finding groups in data: an introduction to cluster analysis. Wiley Series in Probability and Statistics. Wiley, Hoboken

    Google Scholar 

  36. Kazmierski M, Glemas P, Rousseau J, Tisseyre B (2011) Temporal stability of within-field patterns of ndvi in non irrigated mediterranean vineyards. J Int Sci Vigne Vin 45:61–73. https://doi.org/10.20870/oeno-one.2011.45.2.1488

    Article  Google Scholar 

  37. Khosla R, Westfall DG, Reich RM, Mahal JS, Gangloff WJ (2010) Spatial variation and site-specific management zones. Geostatistical applications for precision agriculture. Springer Netherlands, Dordrecht, pp 195–219. https://doi.org/10.1007/978-90-481-9133-8_8

    Chapter  Google Scholar 

  38. Knipper KR, Kustas WP, Anderson MC, Alfieri JG, Prueger JH, Hain CR, Gao F, Yang Y, McKee LG, Nieto H, Hipps LE, Alsina MM, Sanchez L (2019a) Evapotranspiration estimates derived using thermal-based satellite remote sensing and data fusion for irrigation management in California vineyards. Irrig Sci 37:431–449. https://doi.org/10.1007/s00271-018-0591-y

    Article  Google Scholar 

  39. Knipper KR, Kustas WP, Anderson MC, Alsina MM, Hain CR, Alfieri JG, Prueger JH, Gao F, McKee LG, Sanchez LA (2019b) Using high-spatiotemporal thermal satellite ET retrievals for operational water use and stress monitoring in a California vineyard. Remote Sens 11:2124. https://doi.org/10.3390/rs11182124

    Article  Google Scholar 

  40. Knipper KR, Kustas WP, Anderson MC, Nieto H, Alfieri JG, Prueger JH, Hain CR, Gao F, McKee LG, Alsina MM, Sanchez L (2020) Using high-spatiotemporal thermal satellite ET retrievals to monitor water use over California vineyards of different climate, vine variety and trellis design. Agric Water Manag 241:106361. https://doi.org/10.1016/j.agwat.2020.106361

    Article  Google Scholar 

  41. Kumar S, Machiwal D, Dayal D (2017) Spatial modelling of rainfall trends using satellite datasets and geographic information system. Hydrol Sci J 62:1636–1653. https://doi.org/10.1080/02626667.2017.1304643

    Article  Google Scholar 

  42. Kustas WP, Anderson MC, Alfieri JG, Knipper K, Torres-Rua A, Parry CK, Nieto H, Agam N, White WA, Gao F, McKee L, Prueger JH, Hipps LE, Los S, Alsina MM, Sanchez L, Sams B, Dokoozlian N, McKee M, Jones S, Yang Y, Wilson TG, Lei F, McElrone A, Heitman JL, Howard AM, Post K, Melton F, Hain C (2018) The grape remote sensing atmospheric profile and evapotranspiration experiment. Bull Am Meteorol Soc 99:1791–1812. https://doi.org/10.1175/BAMS-D-16-0244.1

    Article  PubMed  PubMed Central  Google Scholar 

  43. Laurinec P (2018) TSrepr R package: time series representations. J Open Source Softw. https://doi.org/10.21105/joss.00577

    Article  Google Scholar 

  44. Li H (2019) Multivariate time series clustering based on common principal component analysis. Neurocomputing 349:239–247. https://doi.org/10.1016/j.neucom.2019.03.060

    Article  Google Scholar 

  45. Liao WT (2005) Clustering of time series data—a survey. Pattern Recognit 38:1857–1874. https://doi.org/10.1016/j.patcog.2005.01.025

    Article  Google Scholar 

  46. Lilliefors HW (1967) On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J Am Stat Assoc 62:399. https://doi.org/10.2307/2283970

    Article  Google Scholar 

  47. Liu H, Zhan Q, Yang C, Wang J (2018) Characterizing the spatio-temporal pattern of land surface temperature through time series clustering: based on the latent pattern and morphology. Remote Sens 10:654. https://doi.org/10.3390/rs10040654

    Article  Google Scholar 

  48. Maechler M, Rousseeuw PJ, Struyf A, Hubert M, Hornik K (2019) Cluster: cluster analysis basics and extensions. R package version 2.1.0

  49. Maes WH, Steppe K (2012) Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: a review. J Exp Bot 63:4671–4712. https://doi.org/10.1093/jxb/ers165

    CAS  Article  PubMed  Google Scholar 

  50. Martínez-Casasnovas JA, Ramos MC, Espinal-Utgés S (2010) Hillslope terracing effects on the spatial variability of plant development as assessed by NDVI in vineyards of the Priorat region (NE Spain). Environ Monit Assess 163:379–396. https://doi.org/10.1007/s10661-009-0842-8

    Article  PubMed  Google Scholar 

  51. Mathews A, Jensen J (2013) Visualizing and quantifying vineyard canopy LAI using an unmanned aerial vehicle (UAV) collected high density structure from motion point cloud. Remote Sens 5:2164–2183. https://doi.org/10.3390/rs5052164

    Article  Google Scholar 

  52. McBratney A, Whelan B, Ancev T, Bouma J (2005) Future directions of precision agriculture. Precis Agric 6:7–23. https://doi.org/10.1007/s11119-005-0681-8

    Article  Google Scholar 

  53. Militino AF, Moradi M, Ugarte MD (2020) On the performances of trend and change-point detection methods for remote sensing data. Remote Sens 12:1008. https://doi.org/10.3390/rs12061008

    Article  Google Scholar 

  54. Monteith JL, Unsworth MH (2013) Principles of environmental physics plants, animals, and the atmosphere, 4th edn. Elsevier, Oxford

    Google Scholar 

  55. Moritz S, Bartz-Beielstein T (2017) imputeTS: time series missing value imputation in R. R J 9:207–218. https://doi.org/10.32614/RJ-2017-009

    Article  Google Scholar 

  56. Murolo S, Mancini V, Romanazzi G (2014) Spatial and temporal stolbur population structure in a cv. Chardonnay vineyard according to vmp1 gene characterization. Plant Pathol 63:700–707. https://doi.org/10.1111/ppa.12122

    CAS  Article  Google Scholar 

  57. Nawar S, Corstanje R, Halcro G, Mulla D, Mouazen AM (2017) Delineation of soil management zones for variable-rate fertilization: a review. Advances in agronomy. Academic Press Inc, pp 175–245. https://doi.org/10.1016/bs.agron.2017.01.003

    Chapter  Google Scholar 

  58. Netzer Y, Yao C, Shenker M, Bravdo B-A, Schwartz A (2009) Water use and the development of seasonal crop coefficients for superior seedless grapevines trained to an open-gable trellis system. Irrig Sci. https://doi.org/10.1007/s00271-008-0124-1

    Article  Google Scholar 

  59. Norman JM, Anderson MC, Kustas WP, French AN, Mecikalski J, Torn R, Diak GR, Schmugge TJ, Tanner BCW (2003) Remote sensing of surface energy fluxes at 10 1-m pixel resolutions. Water Resour Res. https://doi.org/10.1029/2002WR001775

    Article  Google Scholar 

  60. Noy K, Ohana-Levi N, Panov N, Silver M, Karnieli A (2021) A long-term spatiotemporal analysis of biocrusts across a diverse arid environment: the case of the Israeli-Egyptian sandfield. Sci Total Environ 774:145154. https://doi.org/10.1016/j.scitotenv.2021.145154

    CAS  Article  PubMed  Google Scholar 

  61. O’Shaughnessy SA, Evett SR, Colaizzi PD (2015) Dynamic prescription maps for site-specific variable rate irrigation of cotton. Agric Water Manag 159:123–138. https://doi.org/10.1016/J.AGWAT.2015.06.001

    Article  Google Scholar 

  62. Ohana-Levi N, Bahat I, Peeters A, Shtein A, Netzer Y, Cohen Y, Ben-Gal A (2019a) A weighted multivariate spatial clustering model to determine irrigation management zones. Comput Electron Agric 162:719–731. https://doi.org/10.1016/J.COMPAG.2019.05.012

    Article  Google Scholar 

  63. Ohana-Levi N, Paz-Kagan T, Panov N, Peeters A, Tsoar A, Karnieli A (2019b) Time series analysis of vegetation-cover response to environmental factors and residential development in a dryland region. Gisci Remote Sens. https://doi.org/10.1080/15481603.2018.1519093

    Article  Google Scholar 

  64. Ohana-Levi N, Knipper KR, Kustas WP, Anderson MC, Netzer Y, Gao F, Alsina MM, Sanchez LA, Karnieli A (2020a) Using satellite thermal-based evapotranspiration time series for defining management zones and spatial association to local attributes in a vineyard. Remote Sens. https://doi.org/10.3390/rs12152436

    Article  Google Scholar 

  65. Ohana-Levi N, Munitz S, Ben-Gal A, Netzer Y (2020b) Evaluation of within-season grapevine evapotranspiration patterns and drivers using generalized additive models. Agric Water Manag 228:105808. https://doi.org/10.1016/j.agwat.2019.105808

    Article  Google Scholar 

  66. Ohana-Levi N, Munitz S, Ben-Gal A, Schwartz A, Peeters A, Netzer Y (2020c) Multiseasonal grapevine water consumption—drivers and forecasting. Agric for Meteorol 280:107796. https://doi.org/10.1016/J.AGRFORMET.2019.107796

    Article  Google Scholar 

  67. Ohana-Levi N, Ben-Gal A, Peeters A, Termin D, Linker R, Baram S, Raveh E, Paz-Kagan T (2021) A comparison between spatial clustering models for determining N-fertilization management zones in orchards. Precis Agric. https://doi.org/10.1007/s11119-020-09731-5

    Article  Google Scholar 

  68. Park YL, Krell RK, Carroll M (2007) Theory, technology, and practice of site-specific insect pest management. J Asia Pac Entomol 10:89–101. https://doi.org/10.1016/S1226-8615(08)60337-4

    Article  Google Scholar 

  69. Pathak HS, Brown P, Best T (2019) A systematic literature review of the factors affecting the precision agriculture adoption process. Precis Agric. https://doi.org/10.1007/s11119-019-09653-x

    Article  Google Scholar 

  70. Peralta NR, Costa JL, Balzarini M, Castro Franco M, Córdoba M, Bullock D (2015) Delineation of management zones to improve nitrogen management of wheat. Comput Electron Agric 110:103–113. https://doi.org/10.1016/J.COMPAG.2014.10.017

    Article  Google Scholar 

  71. Petitjean F, Inglada J, Gançarski P (2012) Satellite image time series analysis under time warping. IEEE Trans Geosci Remote Sens 50:3081–3095. https://doi.org/10.1109/TGRS.2011.2179050

    Article  Google Scholar 

  72. R Core Team (2020) R: a language and environment for statistical computing. R Foundation for StatisticalComputing, Vienna, Austria. https://www.R-project.org/

  73. Reynolds AP, Richards G, De La Iglesia B, Rayward-Smith VJ (2006) Clustering rules: a comparison of partitioning and hierarchical clustering algorithms. J Math Model Algorithms 5:475–504. https://doi.org/10.1007/s10852-005-9022-1

    Article  Google Scholar 

  74. Romani LAS, Gonçalves RRV, Amaral BF, Chino DYT, Zullo J, Traina C, Sousa EPM, Traina AJM (2011) Clustering analysis applied to NDVI/NOAA multitemporal images to improve the monitoring process of sugarcane crops, in: 2011 6th International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, Multi-Temp 2011—Proceedings. pp. 33–36. https://doi.org/10.1109/Multi-Temp.2011.6005040

  75. Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65. https://doi.org/10.1016/0377-0427(87)90125-7

    Article  Google Scholar 

  76. Semmens KA, Anderson MC, Kustas WP, Gao F, Alfieri JG, McKee L, Prueger JH, Hain CR, Cammalleri C, Yang Y, Xia T, Sanchez L, Mar Alsina M, Vélez M (2016) Monitoring daily evapotranspiration over two California vineyards using Landsat 8 in a multi-sensor data fusion approach. Remote Sens Environ 185:155–170. https://doi.org/10.1016/j.rse.2015.10.025

    Article  Google Scholar 

  77. Sun L, Gao F, Anderson M, Kustas W, Alsina M, Sanchez L, Sams B, McKee L, Dulaney W, White W, Alfieri J, Prueger J, Melton F, Post K (2017) Daily mapping of 30 m LAI and NDVI for grape yield prediction in California vineyards. Remote Sens 9:317. https://doi.org/10.3390/rs9040317

    Article  Google Scholar 

  78. Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8:127–150. https://doi.org/10.1016/0034-4257(79)90013-0

    Article  Google Scholar 

  79. Vanino S, Pulighe G, Nino P, De Michele C, Bolognesi S, D’Urso G (2015) Estimation of evapotranspiration and crop coefficients of tendone vineyards using multi-sensor remote sensing data in a mediterranean environment. Remote Sens 7:14708–14730. https://doi.org/10.3390/rs71114708

    Article  Google Scholar 

  80. Viovy N (2000) Automatic classification of time series (acts): a new clustering method for remote sensing time series. Int J Remote Sens 21:1537–1560. https://doi.org/10.1080/014311600210308

    Article  Google Scholar 

  81. Wang X, Wirth A, Wang L (2007) Structure-based statistical features and multivariate time series clustering, In: Proceedings—IEEE International Conference on Data Mining, ICDM. pp. 351–360. https://doi.org/10.1109/ICDM.2007.103

  82. Watson DJ (1947) Comparative physiological studies on the growth of field crops: I. variation in net assimilation rate and leaf area between species and varieties, and within and between years. Ann Bot 11:41–76. https://doi.org/10.1093/oxfordjournals.aob.a083148

    CAS  Article  Google Scholar 

  83. Whelan BM, Mcbratney AB, Minasny B (2002) Vesper 1.5-spatial prediction software for precision agriculture, In: Rust R, Larson W (Eds), Precision Agriculture, Proceedings of the 6th International Conference of Precision Agriculture, Madison, Wisconsin. ASA/CSSA/ SSSA, Madison, Wisconsin

  84. White WA, Alsina MM, Nieto H, McKee LG, Gao F, Kustas WP (2018) Determining a robust indirect measurement of leaf area index in California vineyards for validating remote sensing-based retrievals. Irrig Sci 37:269–280. https://doi.org/10.1007/s00271-018-0614-8

    Article  Google Scholar 

  85. Williams LE, Ayars JE (2005) Water use of Thompson Seedless grapevines as affected by the application of gibberellic acid (GA3) and trunk girdling—practices to increase berry size. Agric for Meteorol 129:85–94. https://doi.org/10.1016/j.agrformet.2004.11.007

    Article  Google Scholar 

  86. Xia T, Kustas WP, Anderson MC, Alfieri JG, Gao F, McKee L, Prueger JH, Geli HME, Neale CMU, Sanchez L, Alsina MM, Wang Z (2016) Mapping evapotranspiration with high-resolution aircraft imagery over vineyards using one- and two-source modeling schemes. Hydrol Earth Syst Sci 20:1523–1545. https://doi.org/10.5194/hess-20-1523-2016

    Article  Google Scholar 

  87. Xu L, Zhang H, Wang C, Zhang B, Liu M (2018) Crop classification based on temporal information using sentinel-1 SAR time-series data. Remote Sens 11:53. https://doi.org/10.3390/rs11010053

    Article  Google Scholar 

  88. Zhang N, Wang M, Wang N (2002) Precision agriculture—a worldwide overview. Comput Electron Agric 36:113–132. https://doi.org/10.1016/S0168-1699(02)00096-0

    Article  Google Scholar 

  89. Zhang Z, Tang P, Huo L, Zhou Z (2014) MODIS NDVI time series clustering under dynamic time warping. Int J Wavelets Multiresolut Inf Process. https://doi.org/10.1142/s0219691314610116

    Article  Google Scholar 

  90. Zhang L, Weng Q, Shao Z (2017) An evaluation of monthly impervious surface dynamics by fusing Landsat and MODIS time series in the Pearl River Delta, China, from 2000 to 2015. Remote Sens Environ 201:99–114. https://doi.org/10.1016/j.rse.2017.08.036

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the staff of Viticulture, Chemistry and Enology Division of E&J Gallo Winery for logistical support and funding of GRAPEX field and research activities and insight to local irrigation practices. The authors appreciate the cooperation of Mr. Ernie Dosio of Pacific Agri Lands Management, along with the Sierra Loma vineyard staff, providing access to the vineyard and logistical support of GRAPEX field measurement activities. This research was supported in part by the U.S. Department of Agriculture, Agricultural Research Service. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer.

Funding

Funding provided by E. & J. Gallo Winery made possible the acquisition and processing of the vineyard field data and the financial support for the GRAPEX project by a grant from the NASA Applied Sciences–Water Resources Program (Grant Award NNH17AE39I) supported the development of the satellite-based ET product used in this analysis.

Author information

Affiliations

Authors

Contributions

NO-L: conceptualization, software, methods, formal analysis, interpretation, writing, and editing; FG: data collection, conceptualization, methods, software, interpretation, writing, and editing; KK: data collection, conceptualization, methods, software, interpretation, and editing; WPK: conceptualization, data collection, methods, interpretation, and funding acquisition; MCA: data collection and methods; MMA: data collection and interpretation; LAS: data collection; AK: conceptualization, interpretation, writing, and editing.

Corresponding author

Correspondence to Noa Ohana-Levi.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ohana-Levi, N., Gao, F., Knipper, K. et al. Time-series clustering of remote sensing retrievals for defining management zones in a vineyard. Irrig Sci (2021). https://doi.org/10.1007/s00271-021-00752-0

Download citation