Skip to main content

Forecasting daily evapotranspiration using artificial neural networks for sustainable irrigation scheduling

Abstract

Evapotranspiration (ETo) forecasts can play an important role in irrigation scheduling and water resource management. Three state-of-the-art deep learning models, including long short-term memory (LSTM), one-dimensional convolutional neural networks (1D-CNN), and convolutional LSTM (ConvLSTM), were tested to forecast ETo on a daily time scale for seven days period. Daily air temperature (maximum, minimum and mean values), solar radiation, relative humidity, and wind speed data were collected for the 2011–2017 period from three weather stations (Harrington, North Cape, and Saint Peters) across Prince Edward Island (PEI), Canada. The relative importance method was used to determine the best-suited input variables for the models. The deep learning models were evaluated with the walk-forward validation technique using statistical measures of root mean square error (RMSE) and coefficient of determination (R2). The FAO Penman–Monteith modified equation (FAO-56) was used as the reference method for comparison purposes. For calibration and validation evaluation in annually daily ETo forecasts, the hybrid ConvLSTM model recorded lower errors than CNN and LSTM with the lowest calibration and validation daily RMSE of 0.64 and 0.62, 0.81 and 0.81, and 0.81 and 0.70 mm/day for Harrington, North Cape, and Saint Peters weather stations, respectively. The robustness and accuracy of these forecasted models may help farmers, water resource managers, and irrigation planners with improved and sustainable water management at the basin level, and for irrigation scheduling at farm/field level.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Afzaal H, Farooque AA, Abbas F et al (2020) Computation of evapotranspiration with artificial intelligence for precision water resource management. Appl Sci 10:1621. https://doi.org/10.3390/app10051621

    Article  CAS  Google Scholar 

  2. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration—Guidelines for computing crop water. FAO Irrigation and drainage paper 56. FAO, Rome 300(9):D05109

  3. Allen RG, Walter IA, Elliott RA, et al (2005) The ASCE standardized reference evapotranspiration equation. In: Americal Society of Civil Engineers. Reston, VA

  4. Alves WB, Rolim GDS, Aparecido LEDO (2017) Reference evapotranspiration forecasting by artificial neural networks. Eng Agric 37:1116–1125. https://doi.org/10.1590/1809-4430-eng.agric.v37n6p1116-1125/2017

    Article  Google Scholar 

  5. Amatya DM, Irmak S, Gowda P et al (2016) Ecosystem evapotranspiration: challenges in measurements, estimates, and modeling. Trans ASABE 59:555–560. https://doi.org/10.13031/trans.59.11808

    Article  Google Scholar 

  6. Amatya D, Sun G, Gowda P, et al. (2014) Evapotranspiration: Challenges in measurement and modeling from leaf to the landscape scale and beyond. https://doi.org/10.13031/ET.SUMMARY

  7. Angus DE, Watts PJ (1984) Evapotranspiration—how good is the bowen ratio method? Elsevier, pp 133–150

  8. Baerg M (2020) The Island’s irrigation woes. https://www.potatoesincanada.com/the-islands-irrigation-woes/. Accessed 6 Apr 2021

  9. Bezerra BG, da Silva BB, dos Santos CAC, Bezerra JRC (2015) Actual evapotranspiration estimation using remote sensing: comparison of SEBAL and SSEB approaches. Adv Remote Sens 04:234–247. https://doi.org/10.4236/ars.2015.43019

    Article  Google Scholar 

  10. Cao S, Zhang C, Yao Z, Xiao W, Nie L, Zhan D, Zhang L (2019, February). Efficient and effective sparse LSTM on FPGA with bank-balanced sparsity. In Proceedings of the 2019 ACM/SIGDA International Symposium on Field- Programmable Gate Arrays (pp. 63-72).

  11. Chang X, Wang S, Gao Z et al (2019) Forecast of daily reference evapotranspiration using a modified daily thornthwaite equation and temperature forecasts. Irrig Drain 68:297–317. https://doi.org/10.1002/ird.2309

    Article  Google Scholar 

  12. Clulow AD, Everson CS, Mengistu MG et al (2015) Extending periodic eddy covariance latent heat fluxes through tree sap-flow measurements to estimate long-term total evaporation in a peat swamp forest. Hydrol Earth Syst Sci 19:2513–2534. https://doi.org/10.5194/hess-19-2513-2015

    Article  Google Scholar 

  13. Córdova M, Carrillo-Rojas G, Crespo P et al (2015) Evaluation of the penman-monteith (FAO 56 PM) method for calculating reference evapotranspiration using limited data. Mt Res Dev 35:230–239. https://doi.org/10.1659/MRD-JOURNAL-D-14-0024.1

    Article  Google Scholar 

  14. DeJonge KC, Ahmadi M, Ascough JC, Kinzli KD (2015) Sensitivity analysis of reference evapotranspiration to sensor accuracy. Comput Electron Agric 110:176–186. https://doi.org/10.1016/J.COMPAG.2014.11.013

    Article  Google Scholar 

  15. De Veaux RD, Ungar LH (1994) Multicollinearity: a tale of two nonparametric regressions. pp 393–402

  16. Divya P, Sonkiya S, Das P, et al (2014) CAWIS: context aware wireless irrigation system. In: I4CT 2014—1st international conference on computer, communications, and control technology, proceedings. Institute of Electrical and Electronics Engineers Inc., pp 310–315

  17. Duce P, Snyder RL, Spano D (2000) Forecasting reference evapotranspiration. Acta Hortic 537:135–141. https://doi.org/10.17660/ActaHortic.2000.537.13

    Article  Google Scholar 

  18. Environment Canada (2019) Daily data report for february 2019—Climate—Environment and Climate Change Canada. https://climate.weather.gc.ca/climate_data/daily_data_e.html?hlyRange=1994-02-01%7C2016-06-25&dlyRange=1999-07-19%7C2016-06-25&mlyRange=2004-01-01%7C2007-07-01&StationID=10800&Prov=PE&urlExtension=_e.html&searchType=stnName&optLimit=yearRange&StartYear=18. Accessed 8 Nov 2019

  19. Gensler A, Henze J, Sick B, Raabe N (2017) Deep learning for solar power forecasting—an approach using autoencoder and lstm neural networks. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2016 - Conference Proceedings. Institute of Electrical and Electronics Engineers Inc., pp 2858–2865

  20. Gocić M, Motamedi S, Shamshirband S et al (2015) Soft computing approaches for forecasting reference evapotranspiration. Comput Electron Agric 113:164–173. https://doi.org/10.1016/j.compag.2015.02.010

    Article  Google Scholar 

  21. González Perea R, Camacho Poyato E, Rodríguez Díaz JA (2021) Forecasting of applied irrigation depths at farm level for energy tariff periods using Coactive neuro-genetic fuzzy system. Agric Water Manag 256:107068. https://doi.org/10.1016/j.agwat.2021.107068

    Article  Google Scholar 

  22. Government of Prince Edward Island (2019) PEI Statistical Review 2019. https://www.princeedwardisland.ca/en/information/agriculture-and-land/agriculture-statistics. Accessed 6 Apr 2021

  23. Government of Prince Edward Island (2020) Summary of Groundwater Usage in PEI . https://www.princeedwardisland.ca/en/publication/summary-groundwater-usage-pei. Accessed 6 Apr 2021

  24. Granata F, Gargano R, de Marinis G (2020) Artificial intelligence based approaches to evaluate actual evapotranspiration in wetlands. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2019.135653

    Article  PubMed  Google Scholar 

  25. Gupta RK, Chauhan HS (1986) Stochastic modeling of irrigation requirements. J Irrig Drain Eng 112:65–76. https://doi.org/10.1061/(ASCE)0733-9437(1986)112:1(65)

    Article  Google Scholar 

  26. Helms M, Ault SV, Mao G, Wang J (2018, March). An overview of google brain and its applications. In Proceedingsof the 2018 International Conference on Big Data and Education (pp. 72–75).

  27. Hobbins MT (2016) The variability of ASCE standardized reference evapotranspiration: a rigorous, CONUS-wide decomposition and attribution. Trans ASABE 59:561–576

    Article  Google Scholar 

  28. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9:1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

    Article  CAS  Google Scholar 

  29. Huo Z, Feng S, Kang S, Dai X (2012) Artificial neural network models for reference evapotranspiration in an arid area of northwest China. J Arid Environ 82:81–90. https://doi.org/10.1016/j.jaridenv.2012.01.016

    Article  Google Scholar 

  30. Hyndman RJ, Athanasopoulos G (2018) Forecasting: principles and practice

  31. Jensen ME, Wright JL (1978) the role of evapotranspiration models in irrigation scheduling. Trans ASAE 21:0082–0087

    Article  Google Scholar 

  32. Jimenez AF, Cardenas PF, Canales A et al (2020) A survey on intelligent agents and multi-agents for irrigation scheduling. Comput Electron Agric 176:105474

    Article  Google Scholar 

  33. König G, Molnar C, Bischl B, Grosse-Wentrup M (2020) Relative Feature Importance. https://doi.org/10.1007/978-3-030-68787-8

  34. Kumar M, Raghuwanshi NS, Singh R et al (2002) Estimating evapotranspiration using artificial neural network. J Irrig Drain Eng 128:224–233. https://doi.org/10.1061/(ASCE)0733-9437(2002)128:4(224)

    Article  Google Scholar 

  35. Kumar M, Raghuwanshi NS, Singh R (2011) Artificial neural networks approach in evapotranspiration modeling: a review. Irrig Sci 29:11–25

    Article  Google Scholar 

  36. Landeras G, Ortiz-Barredo A, López JJ (2009) Forecasting weekly evapotranspiration with ARIMA and artificial neural network models. J Irrig Drain Eng 135:323–334. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000008

    Article  Google Scholar 

  37. Luo Y, Traore S, Lyu X et al (2015) Medium range daily reference evapotranspiration forecasting by using ann and public weather forecasts. Water Resour Manag 29:3863–3876. https://doi.org/10.1007/s11269-015-1033-8

    Article  Google Scholar 

  38. Mohan S, Arumugam N (1995) Forecasting weekly reference crop evapotranspiration series. Hydrol Sci J 40:689–702. https://doi.org/10.1080/02626669509491459

    Article  Google Scholar 

  39. Monteith JL (1965) Evaporation and environment. Symp Soc Exp Biol 19:205–234

    PubMed  CAS  Google Scholar 

  40. Moorhead JE, Marek GW, Colaizzi PD et al (2017) Evaluation of sensible heat flux and evapotranspiration estimates using a surface layer scintillometer and a large weighing lysimeter. Sens (switzerl) 17:2350. https://doi.org/10.3390/s17102350

    Article  CAS  Google Scholar 

  41. Morillo JG, Martín M, Camacho E et al (2015) Toward precision irrigation for intensive strawberry cultivation. Agric Water Manag 151:43–51. https://doi.org/10.1016/j.agwat.2014.09.021

    Article  Google Scholar 

  42. Nagappan M, Gopalakrishnan V, Alagappan M (2020) Prediction of reference evapotranspiration for irrigation scheduling using machine learning. Hydrol Sci J 65:2669–2677. https://doi.org/10.1080/02626667.2020.1830996

    Article  Google Scholar 

  43. Penman HL (1948) Natural evaporation from open water, hare soil and grass. Proc R Soc Lond A Math Phys Sci 193:120–145. https://doi.org/10.1098/rspa.1948.0037

    Article  Google Scholar 

  44. Rácz A, Bajusz D, Héberger K (2021) Effect of dataset size and train/test split ratios in QSAR/QSPR multiclass classification. Molecules 26:1111. https://doi.org/10.3390/MOLECULES26041111

    Article  PubMed  PubMed Central  Google Scholar 

  45. Rhenals AE, Bras RL (1981) The irrigation scheduling problem and evapotranspiration uncertainty. Water Resour Res 17:1328–1338. https://doi.org/10.1029/WR017i005p01328

    Article  Google Scholar 

  46. Richards W, Daigle R (2011) Scenarios and guidance for adaptation to climate change and sea-level rise—NS and PEI municipalities. Atlantic Climate Adaptation Solutions Association

  47. Sagheer A., Kotb M (2019). Time series forecasting of petroleum production using deep LSTM recurrent networks. Neurocomputing, 323: 203-213. Shi X, Chen Z, Wang H, et al (2015) Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems. Neural information processing systems foundation, pp 802–810

  48. Shock CC, Feibert EBG, Saunders LD (1998) Potato yield and quality response to deficit irrigation. HortScience 33:655–659. https://doi.org/10.21273/hortsci.33.4.655

    Article  Google Scholar 

  49. Sudheer KP, Gosain AK, Ramasastri KS (2003) Estimating actual evapotranspiration from limited climatic data using neural computing technique. J Irrig Drain Eng 129:214–218. https://doi.org/10.1061/(asce)0733-9437(2003)129:3(214)

    Article  Google Scholar 

  50. Tikhamarine Y, Malik A, Souag-Gamane D, Kisi O (2020) Artificial intelligence models versus empirical equations for modeling monthly reference evapotranspiration. Environ Sci Pollut Res 27:30001–30019. https://doi.org/10.1007/s11356-020-08792-3

    Article  CAS  Google Scholar 

  51. Torres AF, Walker WR, McKee M (2011) Forecasting daily potential evapotranspiration using machine learning and limited climatic data. Agric Water Manag 98:553–562. https://doi.org/10.1016/j.agwat.2010.10.012

    Article  Google Scholar 

  52. Trajkovic S, Todorovic B, Stankovic M (2005) Closure to “forecasting of reference evapotranspiration by artificial neural networks” by slavisa trajkovic, branimir todorovic, and miomir stankovic. J Irrig Drain Eng 131:391–392. https://doi.org/10.1061/(asce)0733-9437(2005)131:4(391)

    Article  Google Scholar 

  53. Traore S, Luo Y, Fipps G (2016) Deployment of artificial neural network for short-term forecasting of evapotranspiration using public weather forecast restricted messages. Agric Water Manag 163:363–379. https://doi.org/10.1016/j.agwat.2015.10.009

    Article  Google Scholar 

  54. Yin Y, Wu S, Zheng D, Yang Q (2008) Radiation calibration of FAO56 Penman-Monteith model to estimate reference crop evapotranspiration in China. Agric Water Manag 95:77–84. https://doi.org/10.1016/j.agwat.2007.09.002

    Article  Google Scholar 

  55. Zapata-Impata B, Gil P, Torres F (2019) Learning spatio temporal tactile features with a ConvLSTM for the direction of slip detection. Sensors 19:523. https://doi.org/10.3390/s19030523

    Article  PubMed Central  Google Scholar 

  56. Zhang J, Zhu Y, Zhang X et al (2018) Developing a long short-term memory (LSTM) based model for predicting water table depth in agricultural areas. J Hydrol 561:918–929. https://doi.org/10.1016/j.jhydrol.2018.04.065

    Article  Google Scholar 

  57. Zhi M (1994) Forecast of Crop Evapotranspiration. ICID Bull 43:23–26

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Aitazaz Ahsan Farooque or Farhat Abbas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Farooque, A.A., Afzaal, H., Abbas, F. et al. Forecasting daily evapotranspiration using artificial neural networks for sustainable irrigation scheduling. Irrig Sci (2021). https://doi.org/10.1007/s00271-021-00751-1

Download citation