Skip to main content

Pressure–volume curve traits of chia (Salvia hispanica L.): an assessment of water-stress tolerance under field conditions

Abstract

Chia is a species that has been described as being tolerant to water stress, but its ecological adaptative responses to water deficits are unknown. The effect of water availability on the performance of chia cultivated at three irrigation levels (100%, 70%, and 40% of the reference evapotranspiration) was evaluated under field conditions. The growth and leaf-water relation traits of the plants were measured using pressure–volume curves (PVCs) and vapor pressure osmometry to estimate the water potential at the turgor loss point, relative water content, symplast volume, osmotic potential at maximum turgor, elasticity modulus of cell walls, and the leaf water potential and its components. The results indicated that chia plants adjust their physiological traits under water stress and suggested that they maintain turgor by decreasing both the water potential at the point of turgor loss and the solute potential to maintain functionality. This osmotic adjustment capacity in chia reached a maximum value of 0.5 MPa near the harvest stage. These adjustments allowed Salvia hispanica to maintain its growth and stomatal conductance at a water stress level of 70% of the reference evapotranspiration. Under water stress at 40% of the reference evapotranspiration, independent of these trait adjustments, chia growth virtually stopped, and its stomatal conductance approached zero. Under these conditions, chia experienced stomatal closure at a leaf water potential (− 1.55 MPa) that was higher than the water potential at the point of turgor loss (~ − 3.0 MPa). It is concluded that chia is able to perform osmotic adjustment and that this process interacts with another series of variables that allow chia to adapt to drought stress.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Acevedo E, Fereres E, Hsiao TC, Henderson DW (1979) Diurnal growth trends, water potential and osmotic adjustment of maize and sorghum leaves in the field. Plant Physiol 64:476–480

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Alarcón J, Sanchez-Blanco M, Bolarin M, Torrecillas A (1994) Growth and osmotic adjustment of two cultivars during and after saline stress. Plant Soil 166:75–82

    Article  Google Scholar 

  3. Allen RG, Pereira L, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper, vol 56. Food and Agriculture Organization, Rome

  4. Allen RG, Pereira L, Raes D, Smith M (2006) Evapotranspiración del cultivo: Guías para la determinación de los requerimientos de agua de los cultivos. FAO Irrigation and Drainage Paper, vol 56. Food and Agriculture Organization, Rome

  5. Argentel L, González L, Plana R (2006) Efecto de altas concentraciones salinas sobre la germinación y el crecimiento del trigo (Triticum aestivum) variedad cuba-c 204. Cultiv Trop 27:45–48

    Google Scholar 

  6. Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    CAS  Article  Google Scholar 

  7. Ayerza R, Coates W (2006) Chía: redescubriendo un olvidado alimento de los Aztecas. Del Nuevo Extremo, Buenos Aires

    Google Scholar 

  8. Babu C, Safiullah P, Blum A, Nguyen H (1999) Comparison of measurement method of osmotic adjustment in rice cultivars. Crop Sci 39:150–158

    Article  Google Scholar 

  9. Baltzer J, Gregoire DM, Bunyavejchewin S, Noor SMN, Davis SJ (2009) Coordination of foliar and wood anatomical traits contributes to tropical tree distribution and productivity along the Malay-Thai peninsula. Aust J Bot 96:2214–2223

    Article  Google Scholar 

  10. Banks JM, Hirons AD (2019) Métodos alternativos para estimar el agua potencial en el punto de pérdida de turgencia en los genotipos de Acer. Plant Methods. https://doi.org/10.1186/s13007-019-0410eCollection

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bartlett M, Scoffoni C, Sack L (2012a) The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta- analysis. Ecol Lett 15:393–405

    PubMed  Article  PubMed Central  Google Scholar 

  12. Bartlett M, Scoffoni C, Ardy R, Zhang Y, Sun S, Coa K, Sack L (2012b) Rapid determination of comparative drought tolerance traits: using an osmometer to predict turgor loss point. Methods Ecol Evol 3:880–888

    Article  Google Scholar 

  13. Bartlett MK, Zhang Y, Kreidler N, Sun SW, Ardy R, Cao KF, Sack L (2014) Global analysis of plasticity in turgor loss point, a key drought tolerance trait. Ecol Lett 17:1580–1590

    PubMed  Article  PubMed Central  Google Scholar 

  14. Bartlett MK, Klein T, Jansen S, Choat B, Sack L (2016) The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought. Proc Natl Acad Sci USA 113:13098–13103

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Basnayake J, Cooper M, Henzell RG, Ludlow MM (1996) Influence of rate of development of water deficit on the expression of maximum osmotic adjustment and desiccation tolerance in three grain sorghum lines. Field Crops Res 49:65–76

    Article  Google Scholar 

  16. Benzarti M, Rejeb KB, Debez A, Messedi D, Abdelly C (2012) Photosynthetic activity and leaf antioxidative responses of Atriplex portulacoides subjected to extreme salinity. Acta Physiol Plant 34:1679–1688

    CAS  Article  Google Scholar 

  17. Blackman CJ, Brodribb TJ, Jordan GJ (2010) Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms. New Phytol 188:1113–1123

    PubMed  Article  PubMed Central  Google Scholar 

  18. Blum A (2017) Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ 40:4–10

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. Brodribb TJ, Holbrok NM (2003) Stomatal closure durig leaf dehydration, correlation with other leaf physiological traits. Plant Physiol 132:2166–2173

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Brodribb TJ, Holbrook NM (2006) Declining hydraulic efficiency as transpiring leaves desiccate: two types of response. Plant Cell Environ 29:2205–2215

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. Cahill PJ (2004) Genetic diversity among varieties of Chia (Salvia hispanica L.). Genet Resour Crop Evol 51:773–781

    CAS  Article  Google Scholar 

  22. CIREN (2005) Estudio Agrológico IV Región. Descripciones de suelos, materiales y símbolos, vol 129. CIREN, Publicación, Santiago

    Google Scholar 

  23. Clifford SC, Arndt SK, Corlett JE, Sangeeta J, Sankhla L, Popp M, Jones HG (1998) The role of solute accumulation, osmotic adjustment and changes in cell wall elasticity in drought tolerance in Ziziphus mauritania (L). J Exp Bot 49:967–977

    CAS  Article  Google Scholar 

  24. Cortés D, Silva H, Baginsky C, Morales L (2017) Climatic zoning of chia (Salvia hispanica L) in Chile using a species distribution model. Span J Agric Res 15(3):e0302

    Article  Google Scholar 

  25. Dayer S, Herrera JC, Dai Z, Burlett R, Lamarque LJ et al (2020) The sequence and thresholds of leaf hydraulic traits underlying grapevine varietal differences in drought tolerance. J Experimental Bot 71(14):4333–4344

    CAS  Article  Google Scholar 

  26. Di Rienzo JA, Casanoves F, Balzarini MG, González L, Tablada M, Robledo YC (2011) Grupo Infostat FCA. Universidad Nacional de Córdoba, Argentina. https://www.infostat.com.ar

  27. Di Sapio O, Bueno M, Busilacchi H, Quiroga M, Severin C (2012) Caracterización morfoanatómica de hoja, tallo, fruto y semilla de Salvia hispanica L. (Lamiacea). Boletin Latinoam del Caribe de Plantas Med Aroma 11(3):249–268

  28. Escobar H, Solis de Ovando L, Contreras D, Baginsky C, Arenas J, Silva H (2018) Efecto de la disponibilidad de agua de riego en el intercambio gaseoso, rendimiento de semillas, biomasa y eficiencia en el uso del agua en dos fenotipos de Salvia hispanica L., Chia establecidos en el Valle de, Azapa Arica Chile. Interciencia 43(1):55–61

    Google Scholar 

  29. Fan S, Blake TJ, Blumwad E (1994) The relative contribution of elastic and osmotic adjustments to turgor maintenance of woody species. Physiol Plant 90:408–413

    Article  Google Scholar 

  30. Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. Girma F, Krieg D (1992) Osmotic adjustment in Sorghum. Plant Physiol 99:577–582

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Gutierrez-Rosati A (2004) Información biomorfológica de la “Chía” Salvia hispánica L. Universidad Nacional Agraria la Molina, Perú

  33. Hamouda I, Badri M, Cruz C, Siddique M, Hessini K (2015) Salt tolerance of Betamacrocarpa is associated with efficient osmotic adjustment and increased apoplastic water content. Plant Biol 18:369–375

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  34. Hatim AY, Houneida A, Khalid A, Hassan F, Esmat A, Eishazly S, Kadambot HMS, Hessini K (2020) Impact of drought on growth, photosynthesis, osmotic adjustment, and cell wall elasticity in Damask rose. Plant Physiol Biochem 150:133–139

    Article  CAS  Google Scholar 

  35. Henry C, Grace PJ, Ruihua P, Barlett MK, Fletcher LR, Scoffoni C, Sack L (2019). Nat Com. https://doi.org/10.1038/s41467-019-11006-1

    Article  Google Scholar 

  36. Hsiao T, Toole J, Yamb E, Turner N (1984) Influence of osmotic adjustment on leaf rolling and tissue death in rice (Oriza sativa L.). Plant Physiol 75:338–341

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Iraki NM, Bressan RA, Hasegawa PM, Carpita NC (1989) Alteration of the physical and chemical structure of the primary cell wall of growth-limited plant cell adapted to osmotic stress. Plant Physiol 91:39–47

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Jiménez P, Masson L, Quitral V (2013) Composición química de semilla de Chía, linaza y rosa mosqueta y su aporte en ácidos grasos omega-3. Rev Chil Nutr 40:155–160

    Article  Google Scholar 

  39. Kramer PJ, Boyer JS (1995) Water relations of plants and soils. Academic, San Diego

    Google Scholar 

  40. Kusaka M, Lalusin AG, Fujimura T (2005) The maintenance of growth and turgor in pearl millet (Pennisetum glaucum L.) cultivars with different root structures and osmo-regulation under drought stress. Plant Sci 168:1–14

    CAS  Article  Google Scholar 

  41. Lacerda C, Cambraia J, Oliva M, Ruiz H (2003) Osmotic adjustment in roots and leaves of two sorghum genotypes under NaCl stress. Braz J Plant Physiol 15:113–118

    Article  Google Scholar 

  42. Lenz T, Wright I, Westoby M (2006) Interrelations among pressure-volume curve traits across species and water availability gradients. Physiol Plant 127:423–433

    CAS  Article  Google Scholar 

  43. Leuschner C, Paul Wedde P (2019) The relation between pressure-volume curve traits and stomatal regulation of wáter potential in five temperate broadleaf tree species. Impact of drought on growth, photosynthesis, osmotic adjustment, and cell Wall. Ann Sci 76:60

    Article  Google Scholar 

  44. Li X, Blackman CJ, Choat B, Rymer PD, Medlyn BE, Tissue DT (2019) Drought tolerance traits do not vary across sites differing in water availability in Banksia serrata (Proteaceae). Funct Plant Biol 46(7):624–633

    PubMed  Article  PubMed Central  Google Scholar 

  45. Lovelli S, Valerio M, Phillips TD, Amato M (2019) Water use efficiency, photosynthesis and plant growth of Chia (Salvia hispanica L.) a glasshouse experiment. Acta Physiol Plant 41:3

    Article  CAS  Google Scholar 

  46. Marechaux I, Bartlett MK, Sack L, Baraloto C, Engel J, Joetzjer E, Chave J (2015) Drought tolerance as predicted by leaf water potential at turgor loss point varies strongly across species within an Amazonian forest. Funct Ecol 29:1268–1277

    Article  Google Scholar 

  47. Maréchaux I, Saint-Aandré L, Bartlett M, Sack L, Chave J (2020) Leaf drought tolerance cannot be inferred from classic leaf traits in a tropical rainforest. J Ecol 108(3):1030–1045

    Article  CAS  Google Scholar 

  48. Mart KB, Veneklaas EJ, Bramley H (2016) Osmotic potential at full turgor: an easily measurable trait to help breeders select for drought tolerance in wheat. J Plant Breed 135:278–285

    Google Scholar 

  49. Meza L, Corso S, Soza S (2010) Gestión del riesgo de sequía y otros eventos climáticos extremos en Chile: estudio piloto sobre la vulnerabilidad y la gestión local del riesgo. FOA (Organización de las Naciones Unidas para la Agricultura y la Alimentación), Chile

  50. Mitchell PJ, Veneklaas EJ, Lambers H, Burgess SS (2008) Leaf water relations during summer water deficit: differential responses in turgor maintenance and variation in leaf structure among different plant communities in south-western Australia. Plant Cell Environ 37:2577–2586

    Google Scholar 

  51. Moore JP, Vicre-Gibouin M, Farrant JM, Driouch A (2008) Adaptations of higher plant cell walls to water loss: drought vs desiccation. Physiol Plant 134:237–245

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. Morales-Salinas L, Canessa FM, Mattar C, Orrego R, Matus F (2006) Characterization and edaphic and climatic zonification in the Region of Coquimbo. J Soil Sci Plant Nutr 6(3):52–74

    Google Scholar 

  53. Morgan JM (1995) Growth and yield of wheat lines with differing osmoregulative capacity at high soil water deficit in seasons of varying evaporative demand. Field Crops Res 40:143–152

    Article  Google Scholar 

  54. Morgan J, Hare R, Fletcher R (1986) Genetic variation in osmoregulation in bread and durum wheat and its relationships to grain yield in a range of field environments. Aust J Agric Res 37:449–457

    Article  Google Scholar 

  55. Orozco G (1993) Evaluación de herbicidas para el control de malezas en Chía (Salvia hispanica L.) en condiciones de temporal en Acatic, Jal. Tesis Ingeniero Agrónomo. Universidad de Guadalajara, Jalisco

  56. Pinheiro G, Bates D (2000) Linear Mixed-Effects Models: Basic Concepts and Examples. In: Mixed-Effects Models in S and S-PLUS. Statistics and Computing. Springer, New York

  57. Poorter H, Niinemets Ü, Poorter L, Wright I, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588

    Article  Google Scholar 

  58. R Core Team (2016) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

  59. Raimondo F, Trifilo P, Lo Gullo M, Andri S, Savi T, Nardini A (2015) Plant performance on Mediterranean green roofs: interaction of species-specific hydraulic strategies and substrate water relations. AoB Plant 7:plv007

    Article  Google Scholar 

  60. Rovati A, Escobar E, Prado C (2012) Particularidades de la semilla de chia (Salvia hispanica L.) EEAOC-Avance Agroind 33(3):39–43

  61. Sack L, Cowan PD, Jaikumar N, Holbrook NM (2003) The “hydrology” of leaves: co-ordination of structure and function in temperate woody species. Plant Cell Environ 26:1343–1356

    Article  Google Scholar 

  62. Sadzawka A, Carrasco MA, Grez R, Mora DL (2006) Métodos de análisis recomendados para los suelos Chilenos. INIA. Serie Actas No. 34. Santiago, Chile

  63. Sánchez J, Manzanares M, de Andes E, Tenorio J, Ayerbe L (1998) Turgor maintenance, Osmotic adjustment and soluble sugar and proline accumulation in 49 pea cultivars in response to water stress. Field Crops Res 59:225–235

    Article  Google Scholar 

  64. Sanders G, Arndt S (2012) Osmotic adjustment under drought conditions. In: Aroca R (ed) Plant responses to drought stress, vol 490. Springer. Berlin, Heidelberg, pp 199–229

    Chapter  Google Scholar 

  65. Sandoval M, Pérez O (2013) Isolation and characterization of proteins from Chía seeds (Salvia hispanica L.). J Agric Food Chem 61:193–201

    Article  CAS  Google Scholar 

  66. Santibañez F, Santibañez P, Caroca C, González P (2017) Atlas Agroclimático de Chile. Tomo II: Regiones de Atacama y Coquimbo. Fundación para la Innovación Agraria (FIA). Impresora Valus Ltda, Santiago

    Google Scholar 

  67. Scholander P, Hammel H, Bradstreet E, Hemmingsen E (1995) Sap pressure in vascular plants. Science 148:339–346

    Article  Google Scholar 

  68. Scoffoni C, Rawls M, McKown A, Cochard H, Sack L (2011) Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture. Plant Physiol 156:832–843

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. Sheffield J, Wood EF (2008) Global trends and variability in soil moisture and drought characteristics, 1950–2000, from observation-driven simulations of the terrestrial hydrologic cycle. J Clim 21:432–458

    Article  Google Scholar 

  70. Silva H, Ortiz M, Acevedo E (2007) Hydric relationships and osmotic adjustment in Wheat. Agrociencia 41:23–34

    Google Scholar 

  71. Silva H, Garrido M, Baginsky C, Valenzuela A, Morales L, Valenzuela C, Pavez S, Alister S (2016) Effect of water availability on growth, water use efficiency and omega 3 (ALA) content in two phenotypes of Chía (Salvia hispanica L.) established in the arid Mediterranean zone of Chile. Agric Water Manage 173:67–75

    Article  Google Scholar 

  72. Silva H, Arriagada C, Campos-Saez S, Baginsky C, Castellaro-Galdames G, Morales-Salinas L (2018) Effect of sowing date and water availability on growth of plants of chia (Salvia hispanica L.) established in Chile. PLoS ONE 13(9):e0203116

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  73. Turner NC (1986) Adaptation to water stress deficit: a changing perspective. Aust J Plant Physiol 1986(13):175–190

    Google Scholar 

  74. Turner NC (2017) Turgor maintenance by osmotic adjustment, an adaptive mechanism for coping with plant water deficits. Plant Cell Environ 40:1–3

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  75. Tyree M, Hammel H (1972) The measurement of the turgor pressure and the water relations of plant by the pressure bomb technique. J Exp Bot 23:267–282

    Article  Google Scholar 

  76. Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu JK (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45:523–539

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. Zhu SD, Chen YJ, Ye Q, He PC, Liu H, Li RH, Fu PL, Jiang GF, Cao KF (2018) Leaf turgor loss point is correlated with drought tolerance and leaf carbón economics traits. Tree Physiol. https://doi.org/10.1093/treephys/tpy013

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the Chilean government through National Agency for Research and Development (ANID)/FONDECYT project No. 1120202, entitled “Effect of soil and climatic conditions in the physiology and metabolism secondary in Chia (Salvia hispanica L.), natural source of omega 3 fatty acids”.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Luis Morales-Salinas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Elia Scudiero.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Silva, H., Valenzuela, C., Garrido, M. et al. Pressure–volume curve traits of chia (Salvia hispanica L.): an assessment of water-stress tolerance under field conditions. Irrig Sci (2021). https://doi.org/10.1007/s00271-021-00748-w

Download citation