Skip to main content

Water requirement and crop coefficient of three chickpea cultivars for the edaphoclimatic conditions of the Brazilian savannah biome


Chickpea (Cicer arietinum L.) is a very important legume crop mainly due to its nutritional properties, being cultivated in several countries. However, parameters on water consumption and crop coefficient (Kc) are limited by cultivar for irrigation management. Thus, this study aimed to determine the water requirements and Kc for three chickpea cultivars. The crop reference evapotranspiration (ETo) was estimated using the Penman–Monteith method with meteorological data recorded inside the greenhouse. Crop evapotranspiration (ETc) was obtained by weighing minilysimeters and soil moisture sensors. The Kc was determined by the ETc/ETo ratio. The chickpea cultivars evaluated were Cícero, BRS Aleppo, and BRS Cristalino. The average ETc throughout the cycle was 4.5, 4.1, and 4.5 mm days−1 for cultivars Cícero, BRS Aleppo, and BRS Cristalino, respectively. The average ETc for the respective cultivars was 2.3, 2.5, and 2.4 mm days−1 in the initial phase, reaching 5.6, 4.5, and 5.4 mm days−1 in the crop phase of growth. The Kc values ranged from 0.38 to 1.00 for Cícero, 0.39 to 0.80 for BRS Aleppo, and 0.38 to 0.95 for BRS Cristalino. The cultivar Cícero showed higher Kc and higher water demand. The cultivar BRS Aleppo was the one with the lowest Kc and water demand, but longer duration of maximum value due to indeterminate growth habit. The variation in Kc correlated positively with the leaf number and crop phases patterns. This demonstrates the importance of determining Kc to increase efficiency in irrigation management by cultivar instead of adopting generalized Kc values.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7



Reference evapotranspiration


Crop evapotranspiration


Crop coefficient


Food and Agriculture Organization


Brazilian Agricultural Research Corporation


Field capacity


Permanent wilting point


Days after planting


  1. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration—guidelines for computing crop water requirements. In: FAO Irrigation and drainage paper 56. Food and Agriculture Organization of the United Nations, Rome

  2. Alvares CA, Stape JL, Sentelhas PC et al (2013) Köppen’s climate classification map for Brazil. Meteorol Z.

    Article  Google Scholar 

  3. Anapalli SS, Ahuja LR, Gowda PH et al (2016) Simulation of crop evapotranspiration and crop coefficients with data in weighing lysimeters. Agric Water Manag 177:274–283.

    Article  Google Scholar 

  4. Anapalli SS, Fisher DK, Reddy KN et al (2019) Modeling evapotranspiration for irrigation water management in a humid climate. Agric Water Manag 225:105731.

    Article  Google Scholar 

  5. Anapalli SS, Fisher DK, Pinnamaneni SR, Reddy KN (2020) Quantifying evapotranspiration and crop coefficients for cotton (Gossypium hirsutum L.) using an eddy covariance approach. Agric Water Manag 233:106091.

    Article  Google Scholar 

  6. Antunes Júnior EDJ, Alves Júnior J, Casaroli D (2018) Calibração do sensor capacitivo EC-5 em um latossolo em função da densidade do solo. Reveng 26:80–88.

    Article  Google Scholar 

  7. Artiaga OP, Spehar CR, Boiteux LS, Nascimento WM (2015) Avaliação de genótipos de grão de bico em cultivo de sequeiro nas condições de Cerrado - DOI:10.5039/agraria.v10i1a5129. Revista Brasileira de Ciências Agrárias (Agrária) 10:102–109

    Article  Google Scholar 

  8. Bartlett MK, Klein T, Jansen S et al (2016) The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought. PNAS 113:13098–13103.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Contreras JI, Alonso F, Cánovas G, Baeza R (2017) Irrigation management of greenhouse zucchini with different soil matric potential level. Agronomic and environmental effects. Agric Water Manag 183:26–34.

    Article  Google Scholar 

  10. de Giordano LB, Nascimento WM (2005) Grão-de-bico Cícero, Sabor e qualidade

  11. de Camargo AC, Favero BT, Morzelle MC et al (2019) Is chickpea a potential substitute for soybean? Phenolic bioactives and potential health benefits. Int J Mol Sci 20:2644.

    CAS  Article  PubMed Central  Google Scholar 

  12. de Medeiros GA, Arruda FB, Sakai E, Fujiwara M (2001) The influence of crop canopy on evapotranspiration and crop coefficient of beans (Phaseolus vulgaris L.). Agric Water Manag 49:211–224.

    Article  Google Scholar 

  13. de Sousa DP, Fernandes TFS, Tavares LB et al (2021) Estimation of evapotranspiration and single and dual crop coefficients of acai palm in the Eastern Amazon (Brazil) using the Bowen ratio system. Irrig Sci 39:5–22.

    Article  Google Scholar 

  14. Doorenbos J, Pruitt WO (1977) Guidelines for predicting crop water requirements. Rev. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  15. Evett S, Howell T, Schneider AD et al (2015) The bushland weighing lysimeters: a quarter century of crop et investigations to advance sustainable irrigation. Trans ASABE 58:163–179.

    Article  Google Scholar 

  16. Fares A, Polyakov V (2006) Advances in crop water management using capacitive water sensors. Advances in agronomy. Academic Press, New York, pp 43–77

    Google Scholar 

  17. Gao Z, Wang Y, Tian G et al (2020) Plant height and its relationship with yield in wheat under different irrigation regime. Irrig Sci 38:365–371.

    Article  Google Scholar 

  18. Gaur PM, Tripathi S, Gowda CLL, et al. (2010) Chickpea seed production manual Patancheru 502324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. p 28

  19. Ghoulem M, El Moueddeb K, Nehdi E et al (2019) Greenhouse design and cooling technologies for sustainable food cultivation in hot climates: review of current practice and future status. Biosys Eng 183:121–150.

    Article  Google Scholar 

  20. Gong X, Qiu R, Sun J et al (2020) Evapotranspiration and crop coefficient of tomato grown in a solar greenhouse under full and deficit irrigation. Agric Water Manag 235:106154.

    Article  Google Scholar 

  21. Hoskem BCS, da Costa CA, Nascimento WM et al (2017) Produtividade e qualidade de sementes de grão-de-bico no Norte de Minas Gerais. Revista Brasileira de Ciências Agrárias (Agrária) 12:261–268.

    Article  Google Scholar 

  22. Justino LF, Alves Júnior J, Battisti R et al (2019) Assessment of economic returns by using a central pivot system to irrigate common beans during the rainfed season in Central Brazil. Agric Water Manag 224:105749.

    Article  Google Scholar 

  23. Kale H, Kaplan M, Ulger I et al (2018) Feed value of maize (Zea mays var. indentata (Sturtev.) L.H. Bailey) grain under different irrigation levels and nitrogen doses. Turk J Field Crops.

    Article  Google Scholar 

  24. Kaplan M, Karaman K, Kardes YM, Kale H (2019) Phytic acid content and starch properties of maize (Zea mays L.): effects of irrigation process and nitrogen fertilizer. Food Chem 283:375–380.

    CAS  Article  PubMed  Google Scholar 

  25. Kashiwagi J, Krishnamurthy L, Purushothaman R et al (2015) Scope for improvement of yield under drought through the root traits in chickpea (Cicer arietinum L.). Field Crop Res 170:47–54.

    Article  Google Scholar 

  26. Libardi LGP, de Faria RT, Dalri AB et al (2019) Evapotranspiration and crop coefficient (Kc) of pre-sprouted sugarcane plantlets for greenhouse irrigation management. Agric Water Manag 212:306–316.

    Article  Google Scholar 

  27. López-Urrea R, Sánchez JM, de la Cruz F et al (2020) Evapotranspiration and crop coefficients from lysimeter measurements for sprinkler-irrigated canola. Agric Water Manag 239:106260.

    Article  Google Scholar 

  28. Lozano CS, Rezende R, de Freitas PSL et al (2017) Estimatation of evapotranspiration and crop coefficient of melon cultivated in protected environment. Revista Brasileira de Engenharia Agrícola e Ambiental 21:758–762.

    Article  Google Scholar 

  29. Marin FR, Angelocci LR, Nassif DSP et al (2016) Crop coefficient changes with reference evapotranspiration for highly canopy-atmosphere coupled crops. Agric Water Manag 163:139–145.

    Article  Google Scholar 

  30. Martins JD, Rodrigues GC, Paredes P et al (2013) Dual crop coefficients for maize in southern Brazil: model testing for sprinkler and drip irrigation and mulched soil. Biosyst Eng 115:291–310.

    Article  Google Scholar 

  31. Meirelles ML, Franco AC, Farias SEM, Bracho R (2011) Evapotranspiration and plant–atmospheric coupling in a Brachiaria brizantha pasture in the Brazilian savannah region. Grass Forage Sci 66:206–213.

    Article  Google Scholar 

  32. Mohammed A, Tana T, Singh P et al (2017) Identifying best crop management practices for chickpea (Cicer arietinum L.) in Northeastern Ethiopia under climate change condition. Agric Water Manag 194:68–77.

    Article  Google Scholar 

  33. Moraes DHM, Casaroli D, Evangelista AWP et al (2019) Determination of basal temperature and its relationship with Jatropha crop in irrigated and non-irrigated system. J Agric Sci 11:p465.

    Article  Google Scholar 

  34. Nascimento WM, Artiaga OP, Boiteux LS, et al. (2014) BRS Aleppo: grão de bico. Maior tolerância a fungos de solo. In: Hortaliças Leguminosas. Embrapa Hortaliças, Brasília, pp. 01–04

  35. Nascimento WM, Suinaga FA, Boiteux LS, et al (2017) BRS Cristalino: grão de bico. Nova cultivar de grão-de-bico de dupla aptidão

  36. Odhiambo LO, Irmak S (2012) Evaluation of the impact of surface residue cover on single and dual crop coefficient for estimating soybean actual evapotranspiration. Agric Water Manag 104:221–234.

    Article  Google Scholar 

  37. Ometto JC (1981) Bioclimatología vegetal, 1st edn. Agronomica Ceres, São Paulo

    Google Scholar 

  38. Pendergast L, Bhattarai SP, Midmore DJ (2019) Evaluation of aerated subsurface drip irrigation on yield, dry weight partitioning and water use efficiency of a broad-acre chickpea (Cicer arietinum L.) in a vertosol. Agric Water Manag 217:38–46.

    Article  Google Scholar 

  39. Rodrigues TR, Vourlitis GL, de Lobo FA et al (2014) Seasonal variation in energy balance and canopy conductance for a tropical savanna ecosystem of south central Mato Grosso, Brazil. J Geophys Res Biogeosci 119:1–13.

    Article  Google Scholar 

  40. Saeidi R, Ramezani Etedali H, Sotoodehnia A et al (2021) Salinity and fertility stresses modify Ks and readily available water coefficients in maize (case study: Qazvin region). Irrig Sci.

    Article  Google Scholar 

  41. Soltani A, Robertson MJ, Torabi B et al (2006) Modelling seedling emergence in chickpea as influenced by temperature and sowing depth. Agric For Meteorol 138:156–167.

    Article  Google Scholar 

  42. Talebnejad R, Sepaskhah AR (2015) Effect of deficit irrigation and different saline groundwater depths on yield and water productivity of quinoa. Agric Water Manag 159:225–238.

    Article  Google Scholar 

  43. Urban J, Ingwers MW, McGuire MA, Teskey RO (2017) Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides x nigra. J Exp Bot 68:1757–1767.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Vilela MDS, Cabral Filho FR, Teixeira MB et al (2015) ACURÁCIA DE UM MINI-LISÍMETRO DE PESAGEM ELETRÔNICA DE BAIXO CUSTO. R_I 1:158–167.

    Article  Google Scholar 

  45. Wang Y, Cai H, Yu L et al (2020) Evapotranspiration partitioning and crop coefficient of maize in dry semi-humid climate regime. Agric Water Manag 236:106164.

    Article  Google Scholar 

  46. Wei Z, Paredes P, Liu Y et al (2015) Modelling transpiration, soil evaporation and yield prediction of soybean in North China Plain. Agric Water Manag 147:43–53.

    Article  Google Scholar 

  47. Wijewardana C, Reddy KR, Bellaloui N (2019) Soybean seed physiology, quality, and chemical composition under soil moisture stress. Food Chem 278:92–100.

    CAS  Article  PubMed  Google Scholar 

  48. Xu G, Xue X, Wang P et al (2018) A lysimeter study for the effects of different canopy sizes on evapotranspiration and crop coefficient of summer maize. Agric Water Manag 208:1–6.

    CAS  Article  Google Scholar 

Download references


The authors would like to thank the Federal Institute of Goiás-Campus Ceres (IF Goiano) and to the School of Agronomy of the Federal University of Goiás (UFG) for the infrastructure, support, and inputs made available. To the Brazilian Agricultural Research Corporation (EMBRAPA) for the concession of seeds, to Bristom Inc. for the equipment and technical support, and to everyone who contributed to this research.

Author information



Corresponding author

Correspondence to Marcio Mesquita.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3105 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Silva, K.F., de Moraes, D.H.M., Mesquita, M. et al. Water requirement and crop coefficient of three chickpea cultivars for the edaphoclimatic conditions of the Brazilian savannah biome. Irrig Sci 39, 607–616 (2021).

Download citation