The effects of deficit irrigation practices on evapotranspiration, yield and quality characteristics of two sesame varieties (Sesamum indicum L.) grown in lysimeters under the Mediterranean climate conditions

Abstract

In this study, we investigated the effects of deficit drip irrigation practices on evapotranspiration, water-yield relations, and quality characteristics of two sesame varieties (Muganli-57 and Birkan) grown in the lysimeters under the Mediterranean climate conditions. Irrigation treatments were rainfed (non-irrigated) (I0), drip irrigation with 25% (DI25), 50% (DI50), 75% (DI75), and 100% (DI100) of cumulative evaporation (Epan) measured in Class A pan with three replications. The applied water was corrected by the percentage of vegetation cover until the full cover was attained. Evapotranspiration of Muganli-57 and Birkan ranged from 157.8 to 518.8 mm and 156.4 to 509.2 mm, on average, respectively. The yield values changed between 0.46 and 2.06 t ha−1 in Muganli-57 and between 0.35 and 1.95 t ha−1 in Birkan. Based on the 2-year results, water use efficiency (WUE) of Muganli-57 variety (3.5 kg ha−1 mm−1) was numerically higher than that of the Birkan variety (3.4 kg ha−1 mm−1). In both varieties, it was determined that deficit irrigation generally reduced the yield. However, WUE did not decrease monotonically with decreasing irrigation level. DI50 treatment maximized WUE for two varieties in both years while DI75 maximized WUE for Muganli-57 in 2014. Although irrigation-variety interaction affected relative water content, chlorophyll content index, and seed dry matter, their effect tended to be weak and inconsistent between the 2 years of the study. Deficit irrigation decreased the oil content of sesame and increased its protein content. Similarly, deficit irrigation treatments decreased the linoleic acid content and increased oleic acid content in 1 year but not the other. It was concluded that the Birkan variety is more suitable for irrigated conditions due to the growth characteristics and less saturated fatty acid content. On the contrary, Muganli-57 variety is suitable for non-irrigated conditions in terms of water economy and fatty acid composition.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abdul Jaleel C, Manivannan P, Lakshmanan GMA et al (2008) Alterations in morphological parameters and photosynthetic pigment responses of Catharanthus roseus under soil water deficits. Colloids Surf B Biointerfaces 61:293–303

    Google Scholar 

  2. Afshar RK, Jovini MA, Chaichi MR, Hashemi M (2014) Grain sorghum response to arbuscular mycorrhiza and phosphorus fertilizer under deficit irrigation. Agron J 106:1212–1218

    Article  CAS  Google Scholar 

  3. Allen RG, Wright JL, Pruitt WO et al (2007) Water requirements. In: Hoffman GJ, Evans RG, Jensen ME (eds) Design and operation systems, 2nd edn. ASABE, Michigan, pp 208–288

    Google Scholar 

  4. Amani M, Golkar P, Mohammadi-Nejad G (2012) Evaluation of drought tolerance in different genotypes of sesame (Sesamum indicum L.). Int J Recent Sci Res 3:226–230

    Google Scholar 

  5. AOAC (1990) Offical Methods of Analysis of the Association of Analytical Chemists, (15th ed), Association of Analytical Chemists, 837:999–1000

  6. Arslan H, Hatipoglu H, Karakus M (2014) Şanlıurfa yöresinde tarımı yapılan susam genotiplerinden seçilen bazı hatların ikinci ürün koşullarında verim ve verim unsurlarının belirlenmesi. Turk J Agric Res 1:109–116

    Google Scholar 

  7. Ashri A (1998) Sesame breeding. In: Janick J (ed) Plant breeding reviews. John Wiley & Sons, Inc., pp 16: 179–228

  8. Aydinsakir K, Dinc N, Buyuktas D et al (2016) Assessment of different irrigation levels on peanut crop yield and quality components under Mediterranean conditions. J Irrig Drain Eng 142:1–9

    Article  Google Scholar 

  9. Ayers AS, Westcot DW (1985) Water quality for agriculture. FAO Irrigation and Drainage Paper 20, Rome

  10. Balci A (1973) A lysimeter study on the effects of different irrigation interval on the evapotranspiration and yield of sesame. Ege University, Paper No: 242, Izmir

  11. Baydar H (2005) Agronomic and technological characteristics of the lines with yield, oil, oleic and linoleic types in sesame (Sesamum indicum L.). J Agric Fac Akdeniz 18:267–272

    Google Scholar 

  12. Bedigian D (2004) History and lore of sesame in Southwest Asia. Econ Bot 58:329–353

    Article  Google Scholar 

  13. Bekele S, Tilahun K (2007) Regulated deficit irrigation scheduling of onion in a semiarid region of Ethiopia. Agric Water Manag 89:329–353

    Article  Google Scholar 

  14. Berry JA, Beerling DJ, Franks PJ (2010) Stomata: key players in the earth system, past and present. Curr Opin Plant Biol 13:233–240

    PubMed  Article  Google Scholar 

  15. Betram K, Janssens MJJ, Abdalwahab A (2003) Breeding for drought tolerance in Sesame (Sesamum indicum). In: Conference on Technological and Instituonal Innovations for Sustainable Rural Development. Gottingen, p 135

  16. Black CA (1965) Methods of soil analysis. Part 1. Physical and mineralogical properties, including statistics of measurement and sampling. American Society of Agronomy, Wisconsin

    Book  Google Scholar 

  17. Boureima S, Eyletters M, Diouf M et al (2011) Sensitivity of seed germination and seedling radicle growth to drought stress in sesame (Sesamum indicum L.). Res J Environ Sci 5:557–564

    Article  Google Scholar 

  18. Cagırgan MI (2006) Selection and morphological characterization of induced determinate mutants in Sesame. F Crop Res 96:19–24

    Article  Google Scholar 

  19. Connor DJ, Sadras VO (1992) Physiology of yield expression in sunflower. Field Crop Res 30:333–389

    Article  Google Scholar 

  20. Dajue L, Mundel HH (1996) Safflower. Carthamus tinctorius L. Promoting the conservation and use of underutilized and neglected crops. 7. Institute of Plant Genetics and Crop Plant Research, Rome

  21. Daneshmand A, Shiranirad A, Noormohammadi G, Zareii G, Daneshian J (2008) Effect of water stress and nitrogen on yield, yield components and physiological traits of two varieties of canola. J Sci Tech Agri Natu Res 15:99–112

    Google Scholar 

  22. Demirel K, Genc L, Camoglu G, Asık S (2010) Karpuz bitkisinde yaprak su ıçerigi ve klorofil okumalarından yararlanılarak su stresinin belirlenmesi. Tekirdag Ziraat Fakültesi Derg 7:155–162

    Google Scholar 

  23. Dervis O (1981) Çukurova koşullarinda susam su tüketimi-Rapor No: 53. Tarsus

  24. Dervis O (1986) Çukurova koşullarinda buğdaydan sonra ikinci ürün susamin su tüketimi-Rapor No: 67. Tarsus

  25. Doorenboos J, Pruitt WO (1977) Guidelines for predicting crop water requirements, irrigation and drainage paper 24. L Water Dev Div FAO Rome 24:179

    Google Scholar 

  26. El Naim AM, Ahmed MF (2010) Effect of irrigation on vegetative growth, oil yield and protein content of two sesame (Sesamum indicum L.) cultivars. Res J Agric Biol Sci 6:630–653

    Google Scholar 

  27. El Tinay AH, Khattab AH, Khidir MO (1976) Protein and oil composition of the sesame seed. J Am Oil Chem Soc 53:648–653

    Article  Google Scholar 

  28. Elleuch M, Besbes S, Roiseux O et al (2007) Quality characteristics of sesame seeds and by-products. Food Chem 103:641–650

    CAS  Article  Google Scholar 

  29. El-Tantawy MM, E-Samanody MKM, Khalifa HE, Eid HM (2003) Effect of irrigation intervals and potassium fertilizer levels on sesame yield and water relations. Meteorol Res Bullet 17:113–130

    Google Scholar 

  30. English MJ, Musick JT, Murty VV (1990) Deficit irrigation. In: Hoffman GJ, Howell TA, Solomon KH (eds) Management of farm irrigation systems. ASAE Monograph, St. Joseph, pp 631–663

    Google Scholar 

  31. Eskandari H, Salmasi SZ, Golezani KG, Gharineh MH (2009) Effects of water limitation on grain and oil yields of sesame cultivars. J Food, Agric Environ 7:339–342

    CAS  Google Scholar 

  32. Evans RG, Sadler EJ (2008) Methods and technologies to improve efficiency of water use. Water Resour Res 44:1–15

    Google Scholar 

  33. FAO (2006) World agriculture:towards 2030/2050. Rome

  34. FAO (2018) World sesame production-FAOSTAT. In: Food Agric Organ. Rome

  35. Farré I, Faci JM (2006) Comparative response of maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) to deficit irrigation in a Mediterranean environment. Agric Water Manag 83:135–143

    Article  Google Scholar 

  36. Fischer RA, Rees D, Sayre KD et al (1998) Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies. Crop Sci 38:1467–1475

    Article  Google Scholar 

  37. Fischer G, Tubiello FN, van Velthuizen H, Wiberg DA (2007) Climate change impacts on irrigation water requirements: effects of mitigation, 1990–2080. Technol Forecast Soc Change 74:1083–1107

    Article  Google Scholar 

  38. Foyer CH, Descourvieres P, Kunert KJ (1994) Photo oxidative stress in plants. Plant Physiol 92:696–717

    CAS  Article  Google Scholar 

  39. Gharby S, Harhar H, Bouzoubaa Z et al (2017) Chemical characterization and oxidative stability of seeds and oil of sesame grown in Morocco. J Saudi Soc Agric Sci 16:105–111

    Google Scholar 

  40. Gomez KA, Gomez AA (1984) Statistical procedures for agricultural research. John Wiley and Sons Inc, New York

    Google Scholar 

  41. GTHB (2012) Ikinci susam tescil raporu, Gida Tarim ve Hayvancilik Bakanlıgı, 1/27-224. Bozova, Ankara

    Google Scholar 

  42. Hassanzadeh M, Ebadi A, Panahyan-e-Kivi M et al (2009a) Evaluation of drought stress on relative water content and chlorophyll content of sesame (Sesamum indicum L.) genotypes at early flowering stage. Res J Environ Sci 3:245–350

    Article  Google Scholar 

  43. Hassanzadeh M, Ebadi A, Panahyan-e-Kivi M et al (2009b) Investigation of water stress on yield components of sesame (Sesamum indicum L.) in Moghan region. Res J Environ Sci 3:239–244

    Article  Google Scholar 

  44. Hatfield J (2017) Turfgrass and climate change. Agron J 109:1708–1718

    Article  Google Scholar 

  45. Hatfield JR, Dold C (2019) Water-use efficiency: advances and challenges in a changing climate. Front in Plant Sci 10(103):1–14

    Google Scholar 

  46. Horie T, Lubis I, Takai T, et al (2003) Physiological traits associated with high yield potential in rice. In: Mew TW, Brar DS, Peng S, et al. (eds) Rice science: innovations and impact for livelihood. Los Banos, pp 117–145

  47. Horie T, Matsuura S, Takai T et al (2006) Genotypic difference in canopy diffusive conductance measured by a new remote-sensing method and its association with the difference in rice yield potential. Plant, Cell Environ 29:653–660

    Article  Google Scholar 

  48. Horwitz W, Latimer GW (2005) Official Methods of Analysis of AOAC International, 18th edn. Association Official Analytical Chemists, Washington

    Google Scholar 

  49. Hota T, Pradhan C, Rout GY (2019) Identification of drought tolerant Sesamum genotypes using biochemical markers. Indian J Exp Biol 57:690–699

    CAS  Google Scholar 

  50. Jagtap V, Bhargava S, Sterb P, Feierabend J (1998) Comparative effect of water, heat and light stresses on photosynthetic reactions in Sorghum bicolor (L.) Moench. J Exp Bot 49:1715–1721

    CAS  Google Scholar 

  51. Jiang Y, Huang N (2001) Drought and heat stress injury to two cool-season turfgrasses in relation to antioxidant metabolism and lipid peroxidation. Crop Sci 41:436–442

    CAS  Article  Google Scholar 

  52. Jooyban Z, Moosavi SG (2012) Seed yield and some yield components of sesame as affected by irrigation interval and different levels of n fertilization and superabsorbent. African J Biotechnol 11:10944–10948

    CAS  Article  Google Scholar 

  53. Kacar B, Inal A (2008) Bitki analizleri. Nobel Yayıncılık, Ankara

    Google Scholar 

  54. Kadkhodaie A, Razmjoo J, Zahedi M, Pessarakli M (2014) Oil content and composition of sesame (Sesamum indicum L.) genotypes as affected by irrigation regimes. J Am Oil Chem Soc 91:1734–1744

    Article  CAS  Google Scholar 

  55. Karaca E, Aytac S (2007) Yağ bitkilerinde yağ asitleri kompozisyonu üzerine etki eden faktörler. OMÜ Ziraat Fakültesi Derg 22:123–131

    Google Scholar 

  56. Karaca C, Tekelioglu B, Buyuktas D, Bastug R (2018) Relations between crop water stress index and stomatal conductance of soybean depending on cultivars. Fresenius Environ Bull 27:4212–4219

    CAS  Google Scholar 

  57. Kassab O, El-Noemani AA, El-Zeiny HA (2005) Influence of some irrigation systems and water regimes on growth and yield of sesame plants. J Agron 4:220–224

    Article  Google Scholar 

  58. Kassab OM, Mehanna HM, Aboelill A (2012) Drought impact on growth and yield of some sesame varieties. J Appl Sci Res 8:4544–4551

    Google Scholar 

  59. Khan MAH, Sultana NA, Islam MN, Hasanuzzaman M (2009) Yield and yield contributing characters of sesame as affected by different management practices. Am J Sci Res 4:195–197

    CAS  Google Scholar 

  60. Kim KS, Ryu SN, Chung HG (2006) Influence of drought stress on chemical composition of sesame seed. Korean J Crop Sci 51:73–80

    Google Scholar 

  61. Kirda C (2002) Deficit irrigation scheduling based on plant growth stages showing water stress tolerance. Deficit irrigation practices-FAO24. Food and Agriculture Organization of the United Nations, Rome, pp 3–10

    Google Scholar 

  62. Koksal ES (2006) Determination of the effects of different irrigation level on sugarbeet yield, quality and physiology using infrared thermometer and spectroradiometer. Master Thesis, Ankara University, Ankara

  63. Kramer PJ (1983) Water relations of plants. Academic Press, New York

    Google Scholar 

  64. Kyparissis A, Petropoulou Y, Manetas Y (1995) Summer survival of leaves in a soft-leaved shrub (Phlomis fruticosa L., Labiates) under Mediterranean field conditions: avoidance of photoinhibitory damage through decreased chlorophyll contents. J Exp Bot 46:1825–1831

    CAS  Article  Google Scholar 

  65. Langham DR, Riney J, Smith G, Wiemers T (2008) Sesame grower guide. Sesaco Corporation, San Antonio

    Google Scholar 

  66. Langham DR, Riney J, Smith G et al (2010) Sesame producer guide. Sesaco Corporation, San Antonio

    Google Scholar 

  67. Lazacano-Ferrat I, Lovat CJ (1999) Relationship between relative water content, nitrogen pools, and growth of Phaseolus vulgaris L. and P. acutifoolius A. Gray during water deficit. Crop Sci 39:467–475

    Article  Google Scholar 

  68. Loggale LB (2018) Performance of two sesame cultivars as influenced by supplemental irrigation at Abu Naama. IOSR J Agric Vet Sci 11:6–11

    Google Scholar 

  69. Lu Z, Radin JW, Turcotte EL et al (1994) High yields in advanced lines of pima cotton are associated with higher stomatal conductance, reduced leaf area and lower leaf temperature. Physiol Plant 92:266–272

    CAS  Article  Google Scholar 

  70. Mamnouie E, Fotouhi Ghazvini R, Esfahany M, Nakhoda B (2006) The effects of water deficit on crop yield and the physiological characteristics of barley (Hordeum vulgare L.) varieties. J Agric Sci Technol 8:211–219

    Google Scholar 

  71. Matos AR, d’Arcy-Lameta A, França M, Petres S, Edelman L, Kader JC, Zuily-Fodil Y, Pham-Thia AT (2001) A novel patatin-like gene stimulated by drought stress encodes a galactolipid acyl hydrolase. FEBS Lett 491:188–192

    CAS  PubMed  Article  Google Scholar 

  72. McKevith B (2005) Nutritional aspects of oilseeds. Nutr Bull 30:13–26

    Article  Google Scholar 

  73. Memar MR, Mojaddam M (2015) The effect of irrigation intervals and different amounts of super absorption yield and yield components of sesame in Hamidiyeh weather conditions. Indian J Fundam Appl Life Sci 5:179–186

    Google Scholar 

  74. MGM (2017) İllerimize Ait Genel İstatistik Verileri. In: T.C Orman ve Su İşleri Bakanlığı. https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=A&m=ANTALYA. Accessed 7 Aug 2017

  75. Moazzami AA, Andersson RE, Kamal-Eldin A (2006) HPLC analysis of sesaminol glucosides in sesame seeds. J Agric Food Chem 54:633–638

    CAS  PubMed  Article  Google Scholar 

  76. Moghadam HRT, Zahedi H, Ghooshchi F (2011) Oil quality of canola cultivars in response to water stress and super absorbent polymer application. Pesqui Agropecuária Trop 41:579–589

    Article  Google Scholar 

  77. Mola ID, Guida G, Mistretta C et al (2018) Agronomic and physiological response of giant reed (Arundo donax L.) to soil salinity. Ital J Agron 13:31–39

    Article  Google Scholar 

  78. Molaei P, Ebadi A, Namvar A, Bejandi TK (2012) Water relation, solute accumulation and cell membrane injury in sesame (Sesamum indicum L.) cultivars subjected to water stress. Ann Biol Res 3:1833–1838

    CAS  Google Scholar 

  79. Monteiro de Paula F, Thi ATP, Zuily-Fodil Y, Ferrari-Iliou R, Vieira da Silva J, Mazliak P (1993) Effects of water stress on the biosynthesis and degradation of polyunsaturated lipid molecular species in leaves of Vigna unguiculata. Plant Physiol Biochem 31:707–715

    CAS  Google Scholar 

  80. Nadeem A, Kashani S, Ahmed N et al (2015) Growth and yield of sesame (Sesamum indicum L.) under the influence of planting geometry and irrigation regimes. Am J Plant Sci 6:980–986

    Article  Google Scholar 

  81. Nageswara Rao RC, Talwar HS, Wright GC (2001) Rapid assessment of specific leaf area and leaf nitrogen in peanut (Arachis hypogaea L.) using chlorophyll meter. J Agric Crop Sci 186:175–182

    Article  Google Scholar 

  82. Noorka IR, Hafiz SI, El-Bramawy MAS (2011) Response of sesame to population densities and nitrogen fertilization on newly reclaimed sandy soils. Pakistan J Bot 43:1953–1958

    Google Scholar 

  83. Nxele X, Klein A, Ndimba BK (2017) Drought and salinity stress alters ROS accumulation, water retention, and osmolyte content in sorghum plants. South African J Bot 108:261–266

    CAS  Article  Google Scholar 

  84. Ono K, Maruyama A, Kuwagata T, Mano M, Takimoto T, Hayashi K, Hasegawa T, Miyata A (2013) Canopy-scale relationships between stomatal conductance and photosynthesis in irrigated rice. Glob Chang Biol 19:2209–2220

    PubMed  Article  Google Scholar 

  85. Oz M, Karasu A (2010) Bazı susam (Sesamum İndicum L.) çeşit ve hatlarinin Bursa koşullarinda performanslarinin belirlenmesi. Harran Tarım ve Gıda Bilim Derg 14:21–27

    Google Scholar 

  86. Pietragalla J, Pask A (2011) Stomatal conductance. In: Pask A, Pietragalla J, Mullan D, Reynolds M (eds) Wheat physiological breeding II: a field guide to wheat phenotyping. CIMMYT, pp 15–17

  87. Pourghasemian N, Moradi R, Naghizadeh M, Landberg T (2020) Mitigating drought stress in sesame by foliar application of salicylic acid, beeswax waste and licorice extract. Agric Water Manage 231:105997. https://doi.org/10.1016/j.agwat.2019.105997

    Article  Google Scholar 

  88. Ramos MLG, Parsons R, Sprent JI, Games EK (2003) Effect of water stress on nitrogen fixation and nodule structure of common bean. Pesqui Agropecuária Bras 38:339–347

    Article  Google Scholar 

  89. Ranjbarfordoei A, Samson R, Van Damme P, Lemeur R (2000) Effects of drought stress induced by polyethylene glycol on pigment content and photosynthetic gas exchange of Pistacia khinjuk and P. mutica. Photosynthetica 443–447

  90. Rensburg LV, Kruger GHJ (1994) Evaluation of components of oxidative stress metabolism for use in selection of drought tolerant cultivars of Nicotiana tabacum L. J Plant Physiol 143:730–737

    Article  Google Scholar 

  91. Saman O, Ozturk O (2012) İkinci ürün susamda farklı ekim sıklıklarının verim ve verim unsurları üzerine etkileri. Tarım Bilim Araştırma Derg 5:118–123

    Google Scholar 

  92. Sankar D, Ambandam G, Ramakrishna Rao M, Pugalendi KV (2004) Impact of sesame oil on nifedipine in modulating oxidative stress and electrolytes in hypertensive patients. Asia Pac J Clin Nutr 13:107

    Google Scholar 

  93. Schütz M, Fangmeier A (2001) Growth and yield responses of spring wheat to elevated CO2 and water limitation. Environ Pollut 114:187–194

    PubMed  Article  Google Scholar 

  94. Seghatoleslami MJ, Mousavi SG, Barzgaran T (2013) Effect of irrigation and planting date on morpho-physiological traits and yield of roselle (Hibiscus sabdariffa). J Anim Plant Sci 23:256–260

    Google Scholar 

  95. Sepaskhah AR, Andam M (2001) Crop coefficient of sesame in a semi-arid region of I.R. Iran. Agric Water Manag 49:51–63

    Article  Google Scholar 

  96. Shubhra K, Dayal J, Goswami GL, Munjal R (2004) Effects of water deficit on oil of Calendula aerial parts. Biol Plant 48:445–448

    Article  Google Scholar 

  97. Siddique MRB, Hamid A, Islam MS (2000) Drought stress effects on water relations of wheat. Bot Bull Acad Sin 41:35–39

    Google Scholar 

  98. Smart RE, Bingham GE (1974) Rapid estimates of relative water content. Plant Physiol 53:258–260

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  99. Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58

    CAS  Article  Google Scholar 

  100. Smith M, Steduto P (2012) Yield response to water: the original FAO water production function. In: Steduto P, Hsiao TC, Fereres E, Raes D (eds) Crop yield response to water-FAO66. FAO, Rome, pp 6–13

    Google Scholar 

  101. Stanhill G (2002) Is the Class A evaporation pan still the most practical and accurate meteorological method for determining irrigation water requirements? Agric For Meteorol 112:233–236

    Article  Google Scholar 

  102. Stewart JI, Hagan RM (1973) Functions to predict effects of crop water deficits. J Irrig Drain Div 99:421–439

    Article  Google Scholar 

  103. Stewart BA, Musick JT, Dusek DA (1983) Yield and water-use efficiency of grain sorghum in a limited irrigation-dryland system. Agron J 75:629–634

    Article  Google Scholar 

  104. Swami P, Saxena S, Tripathi SL (2010) Study of behavior of sesame (Sesamum Indicum L.) to relative turgidity, diffusion pressure deficit and transpiration intensity under arid conditions of western Rajasthan. J Agric Sci 2:129–134

    Google Scholar 

  105. Tan AŞ (2006) Susam tarımı-Çiftçi broşürü No:135. Ege Tarımsal Araştırma Enstitüsü, İzmir

    Google Scholar 

  106. Tan AŞ (2011) Bazı susam çeşitlerinin Menemen koşullarında performansları. Anadolu, Ege Tarımsal Araştırma Enstitüsü Derg 21:11–28

    Google Scholar 

  107. Tantawy MM, Ouda SA, Khalil FA (2007) Irrigation optimization for different sesame varieties grown under water stress conditions. J Appl Sci Res 3:7–12

    Google Scholar 

  108. Tolk JA, Howell TA (2003) Water use efficiencies of grain sorghum grown in three USA southern great plains soils. Agric Water Manag 59:97–111

    Article  Google Scholar 

  109. Ucan K, Kıllı F, Gencoglan C, Merdun H (2007) Effect of irrigation frequency and amount on water use efficiency and yield of sesame (Sesamum indicum L.) under field conditions. F Crop Res 101:249–258

    Article  Google Scholar 

  110. Umar UA, Falaki AM, Abubakar IU, Mani H (2015) Productivity of sesame (Sesamum indicum L.) varieties as influenced by irrigation scheduling. Pacific J Sci Technol 16:262–269

    Google Scholar 

  111. Unal MK, Yalçın H (2008) Proximate composition of Turkish sesame seeds and characterization of their oils. Grasas Aceites 59:23–26

    CAS  Google Scholar 

  112. Uzun B, Cagırgan MI (2006) Comparison of determinate and indeterminate lines of sesame for agronomic traits. F Crop Res 96:13–18

    Article  Google Scholar 

  113. Venora G, Calcagno F (1991) Study of stomatal parameters for selection of drought resistant varieties in Triticum durum DESF. Euphytica 57:275–283

    Article  Google Scholar 

  114. Vurarak Y, Angın N, Bilgili ME (2012) Susamda farkli hasat yöntemlerinin dane olgunlaşmasina olan bazi etkilerinin belirlenmesi uzerine bir arastirma. Tarım Bilim Arastırma Derg 5:93–96

    Google Scholar 

  115. Were BA, Onkware AO, Gudu S, Welander M, Carlsson AS (2006) Seed oil content and fatty acid composition in East African sesame (Sesamum indicum L.) accessions evaluated over 3 years. F Crop Res 97:254–260

    Article  Google Scholar 

  116. Wright GC, Nageswara Rao RC, Farquhar GD (1994) Water-use efficiency and carbon isotope discrimination in peanut under water deficit conditions. Crop Sci 34:92–97

    Article  Google Scholar 

  117. Yordanov I, Velikova V, Tsonev T (2000) Plant responses to drought, acclimation and stress tolerance. Photosynthetica 38:171–186

    CAS  Article  Google Scholar 

  118. Zwart SJ, Bastiaanssen WGM (2004) Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize. Agric Water Manag 69:115–133

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by scientific council of Akdeniz University under project no: 2013.02.0121.020. The authors are grateful for the financial support of this project.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dursun Buyuktas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bastug, R., Karaca, C., Buyuktas, D. et al. The effects of deficit irrigation practices on evapotranspiration, yield and quality characteristics of two sesame varieties (Sesamum indicum L.) grown in lysimeters under the Mediterranean climate conditions. Irrig Sci (2021). https://doi.org/10.1007/s00271-021-00732-4

Download citation